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1. BACKGROUND

It was recognized quite early in the development of space technology,

that a unique opportunity exists to make observations of the earth from space

on a global scale. Since most physical phenomenon affects electromagnetic

radiations it was expected that the most effective data collection might be

implemented by space based instruments with properly controlled electromag-

netic transmit and/or receive capabilities.

While radiations of materials from very low to optical frequencies can be

interesting, the most important single global phenomenon is related to the

presence and condition of water. The spatial and temporal distribution of

water temperature, the amount of water in the soil and the atmosphere, the
i

boundaries of snow and ice cover, the extent and state of foliage development,

the presence of variaous chemicals in the water effect the electromagentic

radiation emitted by the associated surface thus generate a signature of some

sort.

In order to utilize this latent potential, a host of basic questions must

be answered. What frequency bands, bandwidths, polarization, angle of inci-

dence, revisit times are best for certain observations? What are the radia-

tion levels and their time variations associated with the phenomenon to be

measured relative to variations caused by external interferences and measuring

system imperfections? What spatial and radiation level (noise temperature)

resolution is necessary in order to make the collected information useful?

What technologies are necessary to collect and process the data?

The present study will be very limited in scope compared to these general

questions. It will address the Instrumentation problems associated to the

measurement of soil moisture with a meaningful spatial and temperature resolu-

tion at a global scale. For this goal only medium term available affordable



technology will be considered. The study while limited in scope, will utilize

a large scale antenna structure, which Is being developed presently as an

experimental model. The interface constrains presented by a single STS flight

will be assumed. '

The" study methodolgy will consists of the following steps: Review of the

science requirements; Analyze the effect of these requirements on the selec-

tion of the concept, scale, quality and method of operation of the instrument;

Present basic system engineering considerations and trade-off related to orbit

parameters, number of spacecraft and their lifetime, observation angles,

beamwidth, crossover and swath, coverage percentage, beam quality quatity and

resoltuion, instrument quantities and integration time; Bracket the key system

characteristics and develope an electromagnetic design of the antenna-passive

radiometer system. Several aperture division combinations and feed array

concepts are Investigated to achieve maximum feasible performance within the

stated STS constrain.

Next, some mechanical configurations are determined which are compatible

with the structural design of the reflector system and can be packaged and

developed within the applicable constrains. Finally, the major technology
i .

develoment needs are identified.



2. SCIENCE REQUIREMENTS

The requirements presented by space science on observation systems have

been studied previously In considerable details. Here only, a summary of

V

these requirements will be given and commented.

The first column of Table 2.1 shows a list of the most interesting physi-

cal parameters, measurands to be determined. All of these measurands are

derived by determining the noise power level at the output of an antenna

terminal for a given relative position between the antenna and a solid angle

region occupied by the boundary or volume of the unknown physical quantity.

This noise power is proportional to the "noise" or "brightness" temperature of

the physical quantity occupying the region. In turn the noise temperature is

the product of physical temperature and emissivity or physical temperature can

be determined if the other characteristics is obtained by alternative methods.

The noise power measurement Itself is accomplished relative to the noise power

of a reference source.

For a given radiometer (calibrated antenna receiver system) the. received

noise power is a function of a number of parameters associated with the

measurands. This allows the deduction of the measurands from the raw noise

temperature data. (See second column of Table 2.1.) By setting and calibra-

tion of the radiometer, use of other instruments and data available from

miscellaneous sources, the radioraetric measurement can supply one or more of

the unknown data.

The third column of Table 2.1 displays those instrument and inherent

external characteristics which Influence the quantity and quality of the

collected data. These characteristics can be affected by engineering design

and are the subject of the present study. Since some of these characteristics

cannot be determined easily and they are Intricately related to each other,



TABLE 2.1

Science requirements and their effects

Measurands
Parameter associated
with the measurands

Instrument and external
characteristics affecting
the obtained data

Soil moisture content
Water surface

temperature
Water temperature

gradient
Water surface roughness
Wind speed at water

surface
Snow boundary
Ice boundary
Sea water salinity
Water pollutant content
Water vapor content
Non-precipitating water

cloud
Precipitating water
(rain)

Material composition
Physical temperature
Frequency of radiation
Polarization mode
and/or angle

Angle of incidence
Spatial distribution
Surface geometry
Depth of penetration
Time variation of all

the above

Antenna aperture diameter
Aperture field distri-

bution
Accuracy and stability of

aperture field distri-
bution

Beam efficiency
Circuit loss
Antenna noise temperature
Number of beams
Crossover between beams
Beam to beam similarity
Beam pointing accuracy
Angle of observation
Polarization modes
Number of polarization

modes
Polarization angles
Orbit height
Orbit shape
Orbital velocity
Orbit variations
Inclination angle
Coverage percentage
Swath
Revisit time
Time of observation
Experiment lifetime
Receiver noise

temperature
System noise temperature
Predetection bandwidth
Dwell time
Integration time
Natural background noise
Man made noise :

the selection of an optimum set of instrument characteristics Is neither

straightforward no unique. Nevertheless the effect of their variation can be

relatively easily demonstrated and used to derive a reasonable approximation

of the optimum condition



The largest effect of the science requirements on the design Is the

selection of frequency.

It Is known that all materials above absolute zero temperature emit
A

', 1

electromagentlc radiation. The magnitude of this radiation increases with the

molecular excitation (physical temperature) and has local maximums as a func-

tion of frequency at the molecular transition lines. When this radiation Is

observed by an ideal antenna, which has an equivalent solid angle field of

view then the total radiation may be decomposed approximately Into two parts.

The first part Is coming from the volume bounded by the antenna aperture, the

"walls" of the solid angle region and the surface at the far end of the cell

where a rapid change of material distribution occurs. The second part of the

radiation is coming from the surface representing the far end boundary of the

cell. Depending on the application either the volumetric or the surface

radtalton contains data about the measurand. The two can be separated from

each other by proper selection of the observation frequency band.

In the case of a space-based observatory, the cell may be part of the

atmosphere and the far end boundary may be the surface of the Earth. The

vbolumetrlc radiation (absorbtion) Is due to the permanent electric dipole

moment of molecules or permanent magnetic dlpole moment of atoms. The primary

radiations are associated to water vapor (first resonance around 21 GHz),

oxygen (first resonance around 60 GHz), but carbon dioxide, ozone, nitrogen

and water vapor have several additional resonances In the 1.5 to 20 micron

optical wavelength range. While the first resonance of the.oxygen molecule Is

at higher frequency then for water vapor the atmospherlng radiation up to

about 14 GHz is caused mostly by oxygen, due to the wider frequency band of

this radiation.



The radiation by the surface at the far end of the cell is mostly caused

by the presence of condensed water. This water is forming the surface of sea,

lakes, rivers or it is absorbed to various exten by the soil.

In final detail this so called surface radiation is not emitted by the

^surface but ba a second cell, which is beyond the atmosphere-Earth surface

boundary. The depth of this cell in the direction of wave propagation associ-

ated to the observing antenna, depends on the capability of the electromag-

netic wave to penetrate into the second region. At a given frequency this is

conveniently characterized by the skin depth. Thus the magnitude of this

"surface" radiation is a function of the material characteristics within the

volume defined by the skin depth. ("Material characteristics" include the

physical temperature.)

According to observations the radiation from the Earth surface is rela-

tively constant and falls into the 50K to 350K range, representing about

±4.2 dB variation relative to the average. When the surface radiation repre-

sents the desirable measurand, then its level must be large compared to the

volumetric radiation and particularly compared to the variable (water vapor

caused) part of the volmetric radiation. Since at, or below fy = 7 GHz the

water vapor caused attenuation is less than one-tenth of the oxygen attenu-

ation, this frequency may be considered as the upper.limit for determining

surface characteristics. , Selecting the frequency as much as possible below

fry impr'oves the capability to suppress the effect of volumetric radiation.

'; f' i - ;
Up to this point both the antenna and the environment in the cell was

assumed to be ideal. Unfortunately, none of these are true in practice. The

assumption, that no external noise sources outside the cell are present is

reasonably accurate at higher frequencies, where the ionosphere acts as a

shield against extraterrestrial radiation. With decreasing frequency, the



ionosphere becomes more and more transparent. For instance, at I GHz the

minimum (near average) galactic radiation reaches about 5K. This is about

one-tenth of the lowest level of the interesting surface radiation. Since the

galactic radiation is reflected by the surface under observation it represents

an error, limiting the resolution of the measurand. On the basis of these

considerations i is customary to define f* = 1 GHz as the lowest practical

frequency for measurements of surface radiation.

It may be noted, that for a practical antenna, not all the radiation is

coming from a limited equivalent solid angle. Volumetric and surface radia-

tion outside the desired angular region represents a background noise, which
i •

further limits the resolution of the measuring system. Finally, man made

noise may be generated inside the cell at the far end boundary or outside the

observed cell. These could cause errors or altogether eliminate the possi-

bility of measurements.

On the basis of the above considerations WARC 79 allocated a number of

frequency bands for radiometric observations. These are listed in Table 2.2.

In the primary frequency bands no electromagnetic transmissions are permitted.

TABLE 2.2 '

Primary frequency band allocations for radiometry

No.

1
2
3
4
5
6

Frequency band (MHz)

1400-1427
2690-2700
10680-10700
15350-15400
31300-31500
31500-31800

Bandwidth (MHz)

27
1.0
20
50
200

. 300

Possible measurand

Soil moisture, salinity
Sea surface temperature
Water roughness, rain, snow
Water vapor, rain, snow
Oil spills, clouds
Ice, snow

According to Table 2.2 for surface noise temperature measurements, only two .

bands are available if the measurements are restricted to the primary frequen-

cies. Among the band of interests, Band 1 has the largest available



bandwidth, thus It ofers the best possible temperature resolution potential.

Since the radiation related to the salinity of sea water has a relatively

C '

strong frequency dependency, the lowest frequency is the most useful from this

point of view. At higher frequencies the sea surface temperature associated

radiations become less dependent on salinity. Consequently, Band 2 can be

used most appropriately for sea surface temperature measurement. While soil

moisture can be measured in Band 2, Band 1 is preferable, because it has a

larger skin depth and it is less sensitive to the canopy effect of foliage.

Ideally, a system, which has combined soil moisture, sea salinity, and sea

surface temperature measuring capability must operate simultaneously or in

time sequence in Band 1 and Band 2. It is unlikely that such capability can

be economically implemented by using a common sperture. If the common

aperture is a reflector or lens, then in Band 1 for an optimum design its

spatial resolution is accuracy limited and its temperature accuracy is loss

limited. In Band 2 it might be possible to achieve the same spatial resolu-

tion, beam number and swath, provided that over the utilized (center) part of

the optics the accuracy is better by the frequency ratio of the bands.

Unfortunately, such utilization of the optics requires a corresponding

increase of feed array size measured in wavelength and number of radiating

elements. this in turn increases feed losses, thus reduces the temperature

resoltulon. If the common aperture is an array, then the area of the higher

frequency band array is only 27% of the area of lower frequency array. The

density of radiating elements in the ghiher frequency array is 3.7 times

larger, thus even if a dual band element can be desinged, the layout and

excitation requirements are different for the two bands. Consequently, the

electromagentic part of the array must be independent. Whether they share a

common supporting and deployment structure is a matter of design detail.



However, when the complexities related ot the array overlap are weighted

against the advantages of saving 27% of the support structure are It is

unlikely that an overlaping design can offer sufficient benefits. On that

basis it is likely that the combined use of a single structure in Band I and

Band 2 is not cost effective, for such a case Band 1 is usable for soil

moisture and sea salinity measurements only.

The next Important characteristics of the radiometer Is the spatial

resolution, influenced by the science requirement. Table 2.3 summarizes the

minimum spatial resolution requirements for the presently considered applica-

tions.

TABLE 2.3

Minimum spatial resolution requirements

Measurand Application Minimum spatial resolution (km)

Soil moisture Agriculture 10
Hydrology 10-25
Climate 100-200

Sea salinity Coastal regions 1
Open ocean 10

It can be seen from Table 2.3 that the measurements of salinity in

coastal regions require an order of magnitude better resolution than adequate

for most other applications. Since this measurement can be accomplished cost

effectively by airplanes, it is not cost effective to burden wider applica-

tions systems with this requirement. Excluding the coastal salinity measure-

ment, 10 km spatial resolution is adequate for all other applications.

The relationship between spatial resolution and antenna size is a compli-

cated one. At the outset it must be understood that the spatial resolution by

Itself does not adequately define the quality of the system since the system



parameters define the product of spatial and temperature resolution only. One

of these resolutions can be improved at the expense of the other for given

antenna dimensions. This phenomenon will be discussed later in more detail.

For the simplest, idealized case, the best spatial resolution can be

achieved between two point sources. If two such point sources are•10 km from

each other at 573 km distance from the antenna, parallel with the antenna

aperture then their distance represents 1° separation. Using a uniformly

illuminated circular antenna aperture with 58.4 X aperture diameter, the

3 dB beamwidth is 9- 3 = 1 ° . The angle between beam maximum and the first null

is also approximately 1°.

Assume that the two point sources have Tj = 100° and T2 = 101° noise

temperatures, respectively, and the temperature resolution of the system is

AT. If AT < Tn ~ T, then for the given beamwidth the antenna can distin-

guish the two point sources. It will measure T^ ± AT in direction of source

1, T2 ± AT in direction of source 2 and l/2(Tj + T2) ± AT in halfway

between. The required antenna diameter for this condition is D = 58.4 X =

1.24 m at 1413 MHz. If AT > T2 - TI then the antenna beamwidth must be

reduced in order that a temperature minimum can be observed as the antenna is

!

pointed halfway between the two sources. At the extreme, this minimum is

zero, when the antenna beam has slmultaniously nulls toward each point source.
!

This requires approximately doubling the antenna diameter to 24.8 m. For this

condition the two point sources are spatially resolved independent on the

temperature resolution.

When the sources have finite angular extent the spatial resolution may

be defined by the antenna beamwidth which produces a detectable increase in

the derivative of noise temperature versus angle as the antenna beam moves

across the crossove point between two different temperature regions.

10



Figure 2.1 illustrates this situation. In this figure TI and T2 are the

actual noise temperatures in angular regions W, and W^.

The dotted line shows the apparent noise temperature at the output of the

test antenna as its main beam moves across the'observed regions. The magni-

tude of the 6T/66 derivative in the transition region is a function of Tj,

T2, Wi, and Wo and the shape of the antenna radiation pattern.

As an example, assume that TI = 100°K, T2 = 101°K, Wt = W2 1°K and

the temperature resolution is AT = 0.1°K. What is the necessary antenna

diameter for this condition? Before this question can be answereed a prac-

tically realizable aperture distribution must be assumed. Select an

A + (1 - A)(l - r2)P

type distribution with A = 0.2 and P = 2. In this case the radiation

pattern is axially symmetrical and 97% of the total antenna power is within a

half cone angle of 90-7<y = 1.27 Rad/D,. Thus the beamwidth of the antenna
-7 / /o A

which contains 97% of the power is

11
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Figure 2.1 - Relationship between spatial resolution and noise temperature
distribution.
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Figure 2.2 shows the results of pattern integration for this case. As,

the antenna beam scans the observed regions the noise temperature versus 9

function has three points:

* v

TL = 97.7575°K

T12 = 98.2387°K

T2 = 98.7200°K

which Lie on a straight line as a function of 6. The T(0) function falls

below this straight line between points 1 and 12 and reaches a value of

97.876°K. This is 0.122°K lower than the value at this angle using the

straight line prediction. Since the assumed temperature resolution is 0.1°K

such a minimum is detectable and the two regions are resolved. For Wj = 1° =

®97%» D = 1^5.5 A = 30.9 m. If the temperature resolution is poorer or the

beam efficiency is poorer than the necessary antenna diameter is larger.

Furthermore, the antenna diameter increases if the orbit height is larger than

the 573 km assumed in the example. Additionally, the resolution deteriorates

inversely with the cosine of the angle accounted. The combined effect of

these factors can cause an increase in the required aperture by as much as

50%. Thus it can be concluded that the antenna diameter for the presently

contemplated resolution is in the order of 45 m, while the exact value can be

determined only by a more detailed and rather complicated analysis.

In the following, a somewhat different approach will be taken. The

antenna diameter will be fixed for the above estimated range in the ..manner

compatible with existing structural development and STS compatibility. Then

the obtainable resolution will be calculated for various design conditions.

13
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Figure 2.2 - Variation of observed noise temperature versus angle for a
practical antenna pattern.
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The science requirements discussed so far, determine an antenna aperture

diameter of D ~ 212X for a nominal orbit height of H = 573 km, if the

associated temperature resolution is approximately AT = 0.12°K. This set of

(D̂ , H and AT) characteristics represent the vasic complexity of the system

which has the desired AR = 10 km spatial resolution. While the optimization

of the D^, H, AT set is important the basic complexity is determined by AR.

Another independent complexity factor is the selection of polarization

mode or modes.

The polarization mode of the antenna affects the measurands because the

reflection coefficient, thus the related noise temperature is a function of

the boundary conditions between two homogeneous region. In the case of the

atmosphere and Earth surface boundary the reflection coefficient is different

.for the parallel and perpendicular electric field component of the incoming

eletromagnetic wave. Thus the observable noise temperature is a function of

the polarization angle or more generally, polarization mode. Furthermore, in

case of a rough surface (like for waves on the surface of the water) the noise

temperature is a different function of the surface roughness for different

polarization angles. If sensitivity to surface roughness must be -minimized

then vertical polarization is perferable at a relatively large, fixed

incidence angle. This can be achieved by one polarization. If sensitivity to

incidence angle must be minimized then the average noise temperature for

horizontal and vertical polarization must be calculated. This requires the

availability of two polarizations.

The measurement of condensed water (rain) in the atmosphere is based on

the scatter mechanism associated to the rain droplets. For this purpose

circular polarization is desirable because It achieves near Independence on

droplet shape.

15



The present application is related to surface noise temperature measure-

ments, thus linear polarization is preferable. For the coratemplated pushbroom

type bean structure the antle of incidence varies from beam to beam. Thus it

would be desirable to include two orthogonal polarizations. On the other

hand, the provision of two polarizations require a doubling of the beam

forming network. This approximately doubles the volume required for the feed

circuit. A more detailed analysis of the impact of such a requirement shows

that dual polarization can be implemented only at the expense of reducing the

number of beams in the pushbroom, due to Shuttle space limitations,. This is

considered as a bad trade off between improved noise temperature measuring

accuracy and reduced coverage. Thus, the single polarization system was

selected as the baseline for the present study. For this situation "vertical"

linear polarization is the preferred polarization mode. It may be noted that

the actual polarization at the point of incidence is approaching vertical only

for near grazing angle condition, for a nadir direction beam the polarization

Is always parallel to the surface of the Earth. The general beam in the

pushbroom.has an intermediate angle (say 45°). If "horizontal" polarization

is selected at the antenna, the angle at the surface of the Earth is nearly

0°, independent on the angle of incidence. l

The science requirements represent an additional important complexity

driver on the radiometer system through the value of the required temperature

and spatial resolution product. This can be seen from the following simple
I

calculations:
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The temperature resolution is given by

2 T
AT = b

where

Tg = T£ + TR is the system noise temperature

B = is the predetection bandwidth = 1/2 of 27 MHz

t.t = is the integration time of the radiometer

In the above expressions

T£ = temperature of the reference load

Tj. = is the noise temperature of the receiver system

t = t = ~— = dwell time
i vS

AR = diameter of the footprint (assumed to be circular in shape)

1 v = orbital velocity projected to the ground = 7.6 km/s for H = 573 km

S = swath width

Inserting t^ into the expression of AT the ATAR product is
I

ATAR = 2Tg (— ) . It was shown previously that' ATAR < 1 °K km is desirable

for the present application. For this case the system noise temperature must

be not larger than

Ts = 298°K

Assuming TR = 40°K front end noise temperature and a ~ IdB circuit loss

in the antenna TRx = 40° + 75° = 115°K. For this case the reference load

must be TR = Tg - TRx = 183°K, or better. This may be achievable by a

thermoelectrically colled load. Alternatively, the load may be kept at 293°K

17



room temperature. In this case T<, = 408°K and the achievable temperature

resolution deteriorates to AT = 0.137°K. If it is desirable to keep the

ATAR product at 1°K km, then the increase of the load temperature results at

37% increase in antenna diameter'. (From 45 m to 61.6 m.)

The above discussions have been conducted for a single beam. In an

actual system a number of simultaneous beams must be formed in order to obtain

the necessary swath using a single satellite. For a given percentage of

coverage revisit time .and ARAT product the swath is uniquely determined.

Since AR is given the number of required beams are

s . - . . • ; • '
" * AR :

Table 2.4 summarizes the realtionship between science requirements and

radiometer system complexity on the basis of the above considerations.

TABLE 2.4

jtela_tionship between science requirements and major system complexity

characteristics for L-band radiometer application

Science requirement Majjor complexity drivers

Product of spatial and .temperature resolution Antenna diameter in wavelength
Revisit time Number of beams
Coverage percentage Orbit height
Independence on angle of incidence System noise temperature

<TRxo' a> TR>
Polarization modes

. t . . . . •

For the purpose of the present study the configuration and the overall

structural diameter of the antenna is given (hoop column antenna with maximum

118 m structural diameter). Consequently the antenna diameter in wavelength

can be influenced only by the number of division applied to the overall

aperture. If no subdivision is employed a certain amount of blockage

18



(scatter) is unavoidable. With the use of subapertures the scatter can. be

greatly reduced but with increasing number of division the available .

subaperture diameter for the formation of a beam decreases. At the same time

the undesirable coupling between subapertures; due to spillover radi'ation

increases. This limits the number of usable subapertures to about 4. Thus it

is adequate to consider singlet, doublet, triplet and quadruplet aperture

configurations only. In each case there Is a practical upper limit for the

feasible number of beams. This is caused by the deterioration of beam quality

with increasing scan angle, for small number of subapertures, the avalable

subaperture is large and the beamwidth is small. Thus in terms of beamwidth a

large number of beam scan is necessary to cover a given swath. This requires
1 , i ; • .'

rapidly increasing feed clusters for Increasing scan angle until the system Is

limited by deteriorating beam quality, feed losses and feed volume.

For alrge number of subapertures, like the case of the quadruplet, the

desired scan angle can be achieved with less feed loss and feed volume. It is

clear that this case has poorer spatial resolution, but the variation of the

ARAT product as a function of the number of subapertures cannot be predicted

without more involved analysis.

On the basis of Table 2.4 the system engineering task for the radiometer

can be defined by the selection process for optimum number of subapertures,

number of beams, orbit height, system noise temperature and polarization modes

if the spatial-temperatue resolution product, revisit time, coverage per-

centage and dependence on angle of incidence is given. . .

These system engineering considerations are presented in Section 3.
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3. SYSTEM ENGINEERING CONSIDERATIONS

The system engineering considerations leading to optimum selection of

antenna 'characteristics will be presented on the basis of a simplified model.

This model characterizes the main physical features of the problem only, yet

It is adequate for acceptably accurate trade off analysis.

For the antenna design optimization the relationship between the antenna

related coordinate system and the ground related coordinate system must be

established. •

Figure 3.1 shows the applicable geometry. It Is assumed that the

satellite carrying the antenna Is in point S, at a height h above a

spherical Earth with a radius of Rg = 6372.88 km. Furthermore, it is assumed

that the satellite moves along a circular orbit with an orbital velocity of

v. The projection of the satellite toward the center of the Earth produces a

ground trace on the surface of the Earth. The speed of this satellite projec-

tion point along the ground trace is v .
o

A point P within the field of view of the antenna on the surface of the

Earth can be characterized by the half cone angle, 6, which is measured

between the direction of nadir and the direction SP. Alternatively^ the

position. P can be defined by a which Is the angle between nadir and the

line connecting P with the center of the Earth. The angle of inci'dence at

the location of P for a wave which is traveling from the antenna toward P

is 6. .

From Figure 3.1 one can derive the following relationship

R + h . _ _
cos a cos(a + o)

or

h = R —L- - 1 + tan « sin 6
cos a cos(a +6)
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n R (1 - CQSa

^ ro^ a

R = 6372.88 km

)

J1-
^

-«- ID tanaSine V
F* *̂

R(1 - cos*) + h ^

' h
~» ^

=tan1 M

5 = location of satellite
P = location of observed point on earth
6 = elevation engle from P to S
B = half swath angle
a = angle between P and S from center of earth

Relationship between h, <* , 6 and e

R + h = R
COS R tan a sin 6

cos u + e )

h = R (_
COSa

_n + tana sin 6
' ' COS ( a + 6 )

Hie spot size minor and major dimensions

= L 6 98% AXM = siru

Figure 3. 1 - Geometry of the field of view for a low Earth orbit satellite
antenna.
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The expression for observable field of view

= 90° - (a + 6) - tan-1 R(1 ! (3-3)

If P is the furthese point to be observed, then 3 is the half angle of the

swath of the satellite.

The distance between the antenna and the point to be observed is

L = {[R(l - cos a) -I- h]2 + (R sin a)2 }1/2 (3-4)

If the beamwidth of the antenna is 9g then n beams are necessary to

fill in the 28 swath angle by a contiguous set of beams, thus •

n-|i

The' 6g angle on the ground defines an illuminated spot. If the antenna

beam has a circular cross section the spot shape on the ground Is approxi-

mately an ellipse, except for a nadir directed beam for which it is a circle.

The major axis of this ellipse is in the plane of Figure 3.1. The minor and

major axis dimensions:

AXffl = L9B (3-6)

AX

The definition of 0g is somewhat arbitrary. Ideally, it should be the

angle, which contains the antenna power, which is ATT. A somewhat more

practical definition is the angle, which contains 98% of the power for a

perfectly accurate antenna. This is called the 98% power angle of the

antenna, ^93%- Using this definition, 9g = 693% an^ tne spatial .resolution

of the antenna, R is
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AR = AXM = L ?8%,
M sin <!

]2 . ,„ . ,2 1/2

sin a

y
_ [R(l - cos a) H- h] + (R sin a)' 6 „ (3-8)

98̂

In order that the satellite maintains Its orbital height, h It must

move along its orbit with an orbit velocity of v. The travel time for one

orbit period for perfect circular orbit is approximately

T = 6.987 x 10~6(hnm + 3440)1/2 siderial hours

0.0250845 (hnm.+ 3440)3/2 solar sec

(3-9)

From the above formulas some basic relationships can be calculated which

are needed in the following.

Table 3.1 shows the value of period time and the number of orbits, p., i

for j = 1,2,3 and 4 days as a function of orbit height. The corresponding

values of v and v are also exhibited.
o

TABLE 3.1

Period time versus orbit altitude for circular orbits

hkm

300
350
400
450
500
550
600
650
700
750
800
850
900
950

hnm

161.98
188.98
215.98
242.98
269.98
296.98
323.97
350.97
377.97
404.97
431.97
458.96
485.96
512.96

•J.S6C

5333
5394
5455
5516
5577
5639
5701
5763
5825
5888
5951
6013
6077
6140

.28

.04

.02

.23

.67

.33

.20

.32

.66

.22

.01

.99

.22

.66

1
1
1
1
1
1
1
1
1
1
I
1
1
1

THr

.48147

.49834

.51284

.53229

.54935

.56648

.58367

.60092

.61824

.63562

.65305

.67055

.68812

.70574

Pl

16.200
16.017
15.864
15.663
15.490
15.321
15.155
14.991
14.831
14.673
14.519
14.366
14.217
14.070

P2

32.400
32.035
31.593
31.325
30.981
30.642
30.309
29.982
29.661
29.347
29.037
28.733
28.433
28.140

P3

.48.600
48.053
47.593
46.988
46.471
45.963
45.464
44.974
44.492
44.020
43.556
43.099
42.650
42.210

P4

64.800
64.071
63.457
62.651
61.961

. 61.284
60.619
59.965
59.323
58.693
58.074
57.466
56.867
56.280

km/s
v

7.861 .

7.771

7.685

7.600

7.546

7.493

km/s
Vg

7.500

7.414

7.016

7.251

7.199

6.514
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From Table 3.1 certain orbit heights can be calculated for which p. is

an integer. In this case the satellite is back to an earlier position with

j periodicity, j is the revisit time of the satellite. For such orbit

heights the appearance of the subsatellite point at any ground location is a

periodic function of time. In the following, only such orbit heights will be

considered. The orbit numbers corresponding to integer values of p* will be

designated by k..

Tables 3.2 and 3.3 show the period times and orbit heights corresponding

to kj for j = 3 and 4 day revisit times, respectively. Figures 3.2 and 3.3

.show the relationship graphically.

TABLE 3.2

Orbit periods and heights for 3 day revisit time

k Tsec hkm

48
47
46
45
44
43
42
41

5400.00
5514.89
5634.78
5760.00
5890.90
6027.91
6171.42
6321.92

281.338
375.362
472.784
573.801
678.622
787.507
900.677
1018.421

TABLE 3.3

Orbit periods and heights for 4 day revisit time

k Tsec ,hkm

64
63
62
61
60
59
58
57
56
55
54

5400.000
5485.714
5574.193
5665.573
5760.000
5857.627
5958.621
6063.158
6171.429
6283.636
6400.000

281.338
281.338

573.801

889.465

1153.218
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901 679 173 281
1018 787 574 375

km

Figure 3.2 - Orbit numbers and period times versus orbit height for 3 day
revisit time.
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1153 889 574 281 h

Figure 3.3 - Orbit numbers and period times versus orbit height for 4 day
revisit time.
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After one orbit period time, T the subsatellite point on the Earth

moves by K(<|>) from West to East, where K is a function of latitude <j> of

the subsatellite point. For a polar orbit (i = 90°) this produces K(0)

distance between subsequent subsatellite points at the equator of the Earth.

For larger latitudes the distance between the traces is less than K(0).

Table 3.4 displays the separation between the 0th and 1st orbit traces at

* = 0 (equator) and * = 45 latitude versus kr

TABLE 3.4

Separation between consecutive orbit traces caused by the

rotation

k3

48
47
46
45
44
43
42
41

of Earth for

hkm

281.3
375.4
472.8
573.8
678.6
787.5
900.7
1018.4

polar orbit, 3 day

K(0)km

2500.00
2553.19
2607.51
2664.21
2727.27
2785.29
2850.07
2917.91

revisit time

K(45°)km

1769.62
1807.27
1846.57
1887.59
1928.47
1975.39
2022.41
2070.54

By definition k3 orbit occurs in 3 days. Thus the k3
th orbit trace

.1^ ' ^ 1* ' •

is the same as the 0 . Some of the orbit traces are between the 0 and

the k3 orbit trace and divide the gap K into smaller sections. The

situation best can be illustrated by an example.

Table 3.5 shows for k3 = 44 polar orbits the distance from the sub-

satellite point of the Otn orbit at the equator and $ = 45° for various

values of the orbit number.
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TABLE 3.5

Separation between orbit traces for ko = 44 for various

Orbit no.

0.44
29.5
15
44.5
30
15
1

30

orbit numbers (h =

Flight direction

N
S
N
S
N
S
N
S

678.6 km)

K(0)km

0
454.55
909.10
1363.65
1818.20
2272.75
2727.27
3181.85

2

K(45°)km

0

642.82
f

1285.66

1928.42

The geometry of the ground traces and the corresponding coverage area is

exhibited for 3 representative cases:

1. k = 44, h =678.62 km, i = 90°, AXM = 9.2 km (Fig. 3.4)

2. k =43, h = 787.52 km, i = 90°, AXM = 10.42 km (Fig. 3.5)

3. k = 44, h = 678.62 km, i = 60°, AXM = 9.2 km (Fig. 3.6)

These figures have been drawn for a scale which is distorted in longitude by

cos <(>. The periodicity of the segments corresponds corresponds ;to the dotted

lines. The coverage within a segment is calculated for the solid line

boundaries. The swath for the figures is selected so that at the equator the

combin'ation of North and Sourth traces results in 100% coverage. The

corresponding swath is called S . For polar (or near polar) orbits the shape

of the uncovered areas are North-South elongated "diamonds". For 60° orbit

inclination these diamonds are approximately square in the vicinity of the

equator. For the condition of Figure 3.4 the maximum uncovered area occurs
r

around •<)>'= 27.5°. Full coverage is obtained for <J> > 52.65°.

Some interesting characteristics can be derived from the displayed

geometries.
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O =52.65°

\ Bxndary of'strio

4> = 38.52

Orbit
trace

Equator J . _ . _._ _,j

454 ."5 km

29.5 I ,5

Not covsrad area

k =.44
h = 678.62 km
i = 90°

AX^ 9.2 kin

c for
o < i < 90°

1851 45455 54 87.061 52.65
20.41 505 60 88.97 51.85
22.42 560 66 90.85 3852
24.65 622.9 72. 92.7) 33.66
3051 800 89 100 0

Figure 3.4 - Geometry of ground traces for k = 43, h = 787.5 km, t = 90C
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k=43
h = 7873 ton
i = 90°

*XF 10.42 km

0

1637
13.41
20.12
23.29
27.46

£"

465.1
523.2
573.0
6783
818.6

n

48
54
59
69
81

85.61
88.84
90.90
94.79
100

5236
51.66
3832
3139

0

4.65.1 'KITI

Figure 3.5 - Geometry oE ground traces for k. = 44 h = 678.62 k.m, i - 90°
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Eciuator

k = 44 c f or
h = 678.62 km o < i<60°
i=60°

A X 9.2 km

i ' - Of

~Q (-W«l "*~ /Q _Q6 Sf n c *M

1851 4545 54 86.43 49
21.06 522.7 62 92.19 43
26.66 681.7 78 97.11.36

Figure 3.6 - Geometry of ground traces for k = 44, h = 678.62 km, i - 60°
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Figures 3.7 and 3.8 show the variation of coverage percentage versus

latitude for i = 90° and 60°, respectively, for k = 44 (h = 678.62).

(In Fig. 3.7 the Instanteneous, in Fig. 3.8 the running average of the

coverage percentage is shown, where the average is calculated over a range of

A<J> = 4°.) It can be seen that for i = 90° the first minimum coverage

latitude is around $ ̂  27° while for i = 60° this shifts to <J> ~ 15°.

Furthermore, with increasing swath the latitude of minimum coverage can be

lowered (to about <f> ~ 10° for i = 60°, S = 681.7 km). With i = 60°,

S = 681.7 km assures a 100% coverage for 36° < <f> < 60°.

Figure 3.9 exhibits the average coverage for i =? 90° as a function of

the swath, S. It can be seen that for k = 44, S = 650 km is needed for

100% coverage. However, for the more realistic swath of 450 km nearly 92%

coverage is achievable.

Figure 3.10 presents the achievable average coverage as a function of

antenna beams for AX« = 9.2 km spatial resolution. For i = 90° the

average is calculated assuming 0 < <J> < 90°. For i = 60° the average is

computed assuming 0 < <j> < 60°. As expected, the inclined orbit gives a
I

better coverage in its applicable area, provided the number of beams are

n > 55. ,

According to Figure 3.11 for i = 90°, n = 50,85.9% and 87.4% average

coverage can be obtained with 9.2 km and 10.4 km spatial resolution, respec-

tively. Any further increase of average coverage percentage requires a rapid

• !
increase of n. ' ''

32



i=90°, k=44, h=678.62 km

100
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50

40

10 20 30 40 50

Figure 3.7 - Variation of coverage versus latitude,
swath, S (i = 90°).

<j> for various values of
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i=60, k=44, h=678.62 km

100

70 -

Figure 3.8 - Variation of coverage versus latitude, (j> for various values of
swath, S (i = 60°).
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Figure 3.9 - Variation of average coverage versus swath for polar orbit.
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Figure 3.10 - Variation of average coverage versus number of antenna'beams for
different orbit inclinations.
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Figure 3.11 - Variation of average coverage versus number of antenna beams for
different orbit heights.
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Table 3.2 indicates that k^ = 48 results in too small orbit height

(unacceptable large atmospheric drag) and k-j = 42 results two large orbit

height (unacceptable poor resolution for the given antenna). Thus only

43 < k. < 47 should be considered. Among these values k^ = 45 must be

omitted, because it results in ground traces which do not fill the gap between

the 0 and 45 orbit. The remaining values for further considerations

are k^ = 47, 46, 44, and 43.

Tables 3.6 and 3.7 display some of the characteristics of these remaining

orbits.

TABLE 3.6

Separation between orbit traces for ko = 46 and various

Orbit no.

0.46
15.5
31
46.5
16
31.5 .
1
16.5

Separation

Orbit no.

0.47
31.5
16

' 47.5
32
16.5
1

32.5

orbit numbers (h

Flight direction

N
S
N
S
N
S
N
S

TABLE 3

between orbit traces

orbit numbers (h :

Flight direction

= 472.8 km).

K(0)km

0
435.39
870.08
1306.19
1741.12
2176.53
2611.44
3046.83

.7

for k3 = 47

= 375.4 km).

K(0)km

0
425.84
851.86
1277.65
1703.73
2129.79
2555.86
2981.65

K(45°)km

0

615.75

1231.16

1846.57

•

and various

K(45°)km , j

0

602.36

1204.72 -

1807.27
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On the basis of the previously presented formulas It Is possible to

calculate the relationship between h, 3, a, and 6. For the given orbit

height and latitude of an Earth point, Tables 3.5, 3.6 or 3.7 give the

applicable K(<J>) separation between orbit traces. From this a can be

determined. Then the use of Figure 3.3 yields 3. The results are exhibited

in Figure 3.12.

Using the above data the design procedure is illustrated by the following

example. If k-j = 44, then h = 678.6 km. At <f> = 45° latitude the separa-

tion between the North directed traces is K(45°) = 642.83 km. This corres-

ponds to

. -1 r , -1 0.5 K(45°) ,, , -1 615.75 „ Qao0a = sin — = sin 15 = sin _-_, -2.8890

From Figure 3.4

! g ~ 25°, 6 ~ 63°

Assuming 6g = Qgg^ = 0.6865°, the number of required beams for contiguous

coverage at <{> = 45° latitude is

_fi,n ;

If k3 = 47, then h = 375.4 km and K(45°)16 = 602.3 km. For such a case

a = 2.707°, 3 S 37°, 6 =50° and n = 108. .

It can be seen from the example that while the spacing between ground

traces is not very sensitive to orbit height the number of necessary beams for

contiguous coverage varies rapidly with h.
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Ux = 118 m, D - 08.96 m, f = 1413.5 MHz, A = .2, P = 2,
' 93 = 3353°, Dx - 230.68 x - 21 .2239 on

-.6865°,

300

Figure 3.12 - Variation of various field of view characteristics versus number
of orbits in 3 day revisit time systems.
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The variation of spatial and temperature, resolution with orbit height

represents the other aspects of the orbit height considerations. This is dis-

played in Table 3.8 assuming 8907 = 0.6865°. The same table indicates the .

orbit separation at the equator and the number of beams necessary for con-

tiguous coverage at the equator when both the North and South traces are

utilized.

TABLE 3.8

Resolution and required beam number characteristics for 6333 = 0.335°,

= 0.686°, 100% coverage at equator, N and S traces utilized,

polar orbit 3 day revisit time.

k3 hkm 2rkm a° 6° 6° Lkm AXm
km 6XM

km n vg
km/S

47 375.4 425.5 1.913 58.77 29.31 434.6 5.206 6.088 84 7.2607
I. 46 472.8 434.8 1.954 63.52 24.52 523.7 6.274 7.009 72 7.1062
l-i.-? 44 678.6 454.5 2.043 69.54 18.41 719.5 8.619 9.199 54 6.7972

: 43 787.5 465.1 2.091 71.54 16.37 825.2 9.885 10.421 48 6.6427

It can be seen from Table 3.8 that the spatial resolution improves

rapidly with decreasing h while the speed of suborbital point increases.

This reduces the available dwell time, thus temperature resolution. Table 3.9

exhibits the variation of normalized spatial resolution, (AXM)N, ground

speed, (VCT^N' dwell time, t-^, and the product resolution (AXM)N(AT)N as a

function.of h.

It can be seen from Table 3.9 that for a given antenna the product

resolution improves with lower orbit height. Thus it can be concluded that
I

the orbit height must be as small as possible, compatible with the largest

n which can be accommodated within the constrains of the launch vehicle.
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TABLE 3.9

Variation of the normalized resolution characteristics

*i
47 '
46
44
43

h

375.4
472.8
678.6
787.5

<«„>»
1

1.151
1.511
1.711

(vg)N

1
.9787
.9361
.9149

'N

1
1.176
1.614
1.870

(AT)N

1
.9221
.7870
.7312

(AX)M(AT)N

1
1.061
1.189
1.251

The problems associated with increasing n can be seen from Table 3.10.

This table exhibits the full swath angle, 23, of the overall antenna system

and the maximum scan angle, *^M> °f each subaperture when the overall

' i • ' .
aperture is divided into N = 2, 3 or 4 subapertures. For this situation the

difficulty to make a properly formed beam can be characterized by the
i

^N = ®M^3dB' normalized scan angle. Note that in Table 3.10 63 is con-

stant. This assumes that the overall diameter of the antenna aperture is

increased to keep the subaperture diameters in wavelength constant as the

number of subdivisions increases.

|

TABLE 3.10

Required scan angles for various numer of subapertures, N, assuming

contagious coverage at the equator, 6 = 0.355°, N and S traces

utilized, polar orbit, and 3 days revisit time.

2B° /N ±e£ ; ±6N = eM/e3

k3 n 26° N = 2 N = 3 N = 4 N = 2 N = 3 N = 4 N =~~l N = 3 N~= 4

47 84 56.62 29.31 18.87 14.15 14.65 9.43 7.07 43.73 28.14 21.10
46 72 49.04 24.52 16.34 12.26 12.26 8.17 6.13 36.59 24.38 18.30
44 54 36.82 18.41 12.27 9.20 9.20 6.13 4.60 27.46 18.30 13.73
43 48 32.74 16.31 10.91 8.18 8.15 5.45 4.09 24.32 16.27 12.21

It can be seen, that at one extreme, for ko =47 (h = 375.4 km) with

N = 2 subapertures the antenna must scan 43.73 63. This cannot be achieved
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by a focal point feed paraboloid reflector. A paraboloid torus optics may be

usable in this case, but such a geometry is characterized by relatively poor

reflector utilization and partial blockage. Furthermore such a configuration

needs a large subarray per beam even for small scan angles in order to

compensate aberations in the optics.

At the other extreme of orbit height range, (k-j = 43, h = 787.5 km) the

product resolution is 25% poorer. However, N = 4 subapertures requires

12.21 Oo beamwidth scan only. This can be comfortably realized with a

relatively large F/D ~ 1.3 and modest size subarrays.

At intermediate orbit height (k.% = 44, h = 678.6 km) N = 3 subaperture

requires Q-^ - 18.3 6^ beam scan. This results in acceptable beam quality

with somewhat larger subarray, thus with an increased size overall feed

cluster. Since the feed cluster complexity and volume is roughly proportional

2 2
with 6 the overall feed system volume is proportional with n6 . The

normalized bolume of this function is exhibited in Table 3.11. ;

TABLE 3.11

Relative variation of overall feed system volume with k.

k3
47
46
44
43

N = 2

22.447
13.470
5.690
3.967

2
n N

N = 3

9.295
5.980
2.527
1.775

N = 4 '

5.225
3.369
1.422

1

The feed volume is taken as unity for the k-% = 43, h = 787.5 km and

N = 4. The volume increases by 5.22T> times as the orbit height is reduced

from 787.5 km to 375.4 km. Thus a 25% of improvement in product resolution

requires a rapid increase of feed complexity.
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For constant k^ the feed volume increases and the resolution decreases

with ddecreasing N.

If k-j = 44 and N is decreased from 4 to 3 then for constant resolu-

tion the overall antenna diameter can be reduced by 0.75 while the feed volume

increases by 1.777. Provided the feed volume increase is approximately com-

pensated by reduced reflector volume such a trade off could be attractive.

This is so because the use of 3 subapertures has structural advantages

relative to the 4 subaperture case. However, for a given overall antenna

structure size the lightest (smallest volume) feed requires the smallest

possible k^ and the largest possible N.

44



4. ELECTROMAGNETIC DESIGN

4.1 General Considerations

The basic mechanical concept of the hoop column involves the use of a

strong circumferentially located hoop and structurally rigid, axially placed

column. Between these elements a set of guywires maintains the static

balance. This basic structure supports an electromagnetically reflecting mesh

surface, forming the optically necessary reflector shape.

From the point of view of RF design the reflector is the only useful

contributor to the antenna. Additional elements like the guywires, the

central column, and the feed of the optics represent undesirable elements as

far as blockage and scatter are concerned.
i

It can be shown, that by controlling the number, diameter, attachment

location and material of the guywires the blockage and scatter related to

these elements can be reduced to a practically acceptable level. On the other

hand the location of the column at the structural symmetry axis remains a

major contributor to the undesirable effects. Additionally, with increasing

number of component beams the feed array represents increasing blockage. This

is causing a reduction of pattern quality through lost aperture area and by

scattering the intercepted radiation into undesirable angular regions.

The above described limitations may or may not be tolerable depending on

the special application. When the antenna must generate one, or a few com-

ponent beams then the feed blockage itself may be small compared to the

scatter caused by the column. Provided that the column is electromagnatically

adequately transparent such a design may be considered for pushbroom antennas

with limited number of beams and with medium quality sidelobe levels. This

configuration is the "singel aperture hoop column antenna" which offers the

best possible resolution for a given structural diameter. With increasing
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number of component beams the number of subarrays In the feed cluster in-

i
creases. Additionally, for increasing scan angle the quality of beam forma-

tion can be maintained only by increasing the number of elements in the sub-

arrays. This increase the feed blockage until the system becomes blockage

limited. Alternatively, it is possible to keep the blockage relatively low by

limiting the number of elements in the subarrays. For such situations the

system rapidly becomes phase error limited. :

It Is clear from he above considerations that for large component beam

number pushbroom applications the feed blockage and column scatter must be

either eliminated or greatly reduced. This requires the offset feeding of the

hoop column antenna. •

Electromagnetically, the simplest possible offset feeding would require

the use of a single aperture offset feed paraboloid. In this configuration

the hoop and column maintains the basic structural symmetry as before and the

axis of the feed array is directed along the axis of the column. The reflec-

tor however, is an offset feed paraboloid, thus it is not axially symmetrical

in the,polar coordinate system with an axis along the axis o the column. The

column is parallel with the direction of maximum feed radiation and(the

scatter from the column is similar to the already discussed case of single

aperture with small number of component beams. However, by increasing the

offset, the feed blockage and scatter can be reduced or at the limit

eliminated. The implementation of such a system requires a relatively large

F/D in order that the shape of the offset paraboloid surface does not deviate

considerably from the shape of its best fit, tilted axis symmetrical para-

bolid. (See Fig. 4.1.) If this condition is not maintained the mechanical

implementation of the offset feed paraboloid reflecting surface on a

symmetrical hoop column structure becomes impractical or impossible.k
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HOOP

-AXIS OF
PARABOLOID COLUMN

Figure 4.1 - Concept of the single aperture offset feed hoop column antenna.



It can be seen from the above that In a single aperture implementation using a

hoop column structure the guywire and feed blockage can be nearly eliminated,

while the column scatter can be only reduced. Such reduction requites the use

of a highly transparent column and mounting the subarrays of the fee'd rela-

tively far away from the column. '

A further reduction of the scatter requires the subdivision of the over-

all aperture into a set of subapertures. When the overall aperture is divided

into two equal halfs, each is illuminated by its own feed array. This con-

figuration allows the tilting of the feed array axis away from the axis of the

column, thus a simultaneous reduction of column scatter and feed blockage.

(See Fig. 4.2.) This configuration offers a great deal of design freedom.

When the feed array is not tilted the complete hoop column aperture is

illuminated and the best resolution is achieved. However, for this case

column scatter and feed blockage is maximum. With increasing feed array tilt

the scatter and blockage is reduced, but the illuminated aperture for a given

taper is decreased and beam width is increased.

A practically interesting special case is when the desired subaperture

contours are tangential with each other. Then the corresponding feed arrays

are nearly outside the projected subapertures. Feed array tilt beyond this

condition allows the compete elimination of feed blockage and the use of

separate focal points for the two half reflectors. When the distance between

the two focal points is small the combined reflector is still nearly .axially

symmetrical, this the symmetrical hoop column system offers an efficient

supporting structure.
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SUBAPERATURE

/ SUBAPERATURE \
' No. 2

Figure 4.2 - Concept of the dual subaperture offset feed hoop column antenna.
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The advantage of the described "double supaperture hoop column antenna"

is the individual subapertures are large. Thus comparatively little gain loss

occurs relative to the single aperture case. Additionally, the availability

of two subapertures allows the assignment of adjacent beams to opposite sub-

apertures, therefore the feed crowding problem is alleviated.

The disadvantage of the double subaperture system is that it provides

either ah approximately 2:1 aperture aspect ratio or results in a bad utiliza-

tion of the available overall aperture. The 2:1 aspect ratio by itself is not

necessarily an undesirable characteristic. When the dividing line between the

subapertures is perpendicular to the direction of flight, the footprint is

relatively narrow in the perpendicular to flight direction, resulting in a

favorable resolution. On the other hand, it is more difficult to design the

subarray for elliptical aperture shape. Additionally, the coverage'of the

given swath requires a large number of greatly scanned component beams.

Acceptable quality beams for this situation requires a large increase of

subarray size for large scan angles. This results in large volume for the

feed array and the overall system becomes beam number (or feed volume)

limited.

Better utilization of the available structure and larger swath angle may

be achieved by further subdivision of the overall aperture. Triple .quadruple

or even higher order subdivision f the aperture may be visualized. ,(See

Fig. 4.J3.)

The "triple subaperture hoop column antenna" utilizes three offset feed

paraboloid reflector segments. The nominal aperture shape of each of these is

circular and the centers of the projected apertures are approximately on an

equilateral triangle. For this situation the diameter of the subaperture is

0.48 times the single aperture hoop column antenna (56.81 m for 118 m
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Figure 4.3 - Concept of the triple and quadruple offset feed hoop
column antenna.
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structural diameter). The three subaperture utilize 69.52% of the maximum

available area.

The configuration creates an unutilized area in the middle of the system.

This accoraodates the column and part or all of the feed arrays. The axes of

the subap'ertures and corresponding focal points are moved outward from the

column, thereby reducing column scatter and allowing more space for the feed

arrays. The feed array caused blockage can be further reduced by art addi-

tional tilt of the subaperture axes away from the axis of the column. For a

pushbroom antenna application one subaperture axis is tilted forward in the

plane containing the flight direction and the local vertical. The beams for

this subaperture are scanned in the plane perpendicular to the offset of the

paraboloid and cover the center part of the desired swath.

The beams for the remaining subapertures are scanned in the plane of the

offset and cover the right and left region of the overall swath. The electro-

magnetic design of the antenna requires two different feeds, however, the

overall structure has three planes for which symmetry can be approximately

maintained. This allows a simplification of the structural design. Further-

more, the axis of the maximallyscanned beam in each of the three offset re-

flector segments has to be one third away from the axis of the subaperture

relative to the single aperture design. The component beamwidth is about half

than for the single aperture (causing 0.48 times poorer resolution) thus the

maximum normalized scan angle is about a factor of 6.23 less. This allows a

reduction of subarray size, more beams and larger swath.

The disadvantage of this configuration is the reduction of available

resolution relative to the single or double subaperture design.
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The "quadruple subaperture hoop column antenna" employs a four-way

division of the overall aperture. Assuming that the subapertures are equal

their diameter is only 0.45 of the structural diameter (53.51 m for 118 m

diameter). The four subapertures utilize 8.2.27% of the maximum area.

The use of four subapertures leaves more space in the center of the

system for the feed arrays. Thes axes of the subarrays are on the conical

surface in order to further minimize scatter and blockage. Two diagonally

opposite axes are in the flight vector - local vertical defined plane, the

remaining axes are in the perpendicular to flight plane. The first set of

subapertures are associated to the inner left and right side of the swath. In

these the beams are scanned in the plane perpendicular to offset. The second

set of antennas cover the outer left and outer right side of the swath. In

this set the beams are scanned in the plane of offset. Each antenna must be

scanned over one fourth of the total swath. Thus the maximum normalized scan

angle is about 8.82 times less and the resolution is 0.45 times less than for

a single aperture using the same structure. The arrangement results in more

beams and larger swath than for the triple subaperture design at the price of

an insignificant 6.1% poorer resolution.

It can be concluded that for a larger swath it is advantageous to in-

crease the number of subapertures. On the other hand, with four subapertures

it is not practical to keep the tilt angle of the reflector segments approxi-

mately identical. This causes a relatively large deviation between the

actually required reflector surfaces and the surface of the originial common

paraboloid. It is difficult to accomodate the boundary regions between ad-

jacent reflector segments, where large steps are required. Due to these

reasons the electromagnetic advantages of the quadruple aperture design are

partially negated by increased mechanical design difficulties.
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In the following some additional details are given for the single,

double, triple, and quadruple subaperture configurations with emphasis on the

triple subaperture desing. The triple subaperture concept was selected as the

baseline .for the present application.

4.2 Single Aperture Concept

The utilization of the hoop column antenna in a single aperture configu-

ration is illustrated in Figure 4.4. In this geometry the governing dimen-

sions are the structural diameter of the hoop, D , and the length of the

column, W« The axis of the column is perpendicular to the lane of' the

hoop. The hoop and column form a symmetrical structure. Relative to these

elements the paraboloid reflector represents an asymmetrical surface. Its

axis is in the direction of Y, which encloses an angle i|»o with the axis of

the column. The paraboloid is offset fed. It is characterized by focal

distance F and offset Q. Q is selected so that all or most of the feed

array is outside the rays associated with the boundary of the paraboloid. In

the plane of offset the meridian curve of the paraboloid contains the H, I,

and J points, where J, the outer terminating point of the paraboloid, is

selected in such a way so that the hoop is not causing blockage. The column

is constructed by using lower and upper sections with maximum envelope dimen-

sions tj and t2» respectively. The lattice structure of the column has 25%

or better transparency.

For the described configuration a radiating element located at the focal
! .1

point F \ does not cause blockage. However, the column interferes with the

radiation of the element. When the element is moved away from the axis of the

column by a distance S, then the beam is scanned in the plane of off .set by

approximagely a = tan" S/LC. When a linear feed array with an axis, perpen-

dicular to the plane of Figure 4.4 is placed at distance S then for the
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Figure 4.4 - Geometry of single aperture offset feed paraboloid hoop
column antenna.
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general element in this array the beam Is scanned both In the plane of the

offset and in the plane perpendicular to offset. If the plane of offset is

the direction of flight then the linear array forms a set of beams in a push-

broom configuration in the plane perpendicular to flight. The plane of the

pushbrooti is tilted forward or backward relative to the axis of the'

paraboloid.

With increasing S the shadow cast by the column on the paraboloid

decreases while ot increases. The first effect reduces scatter, the second

deteriorates the beam shape. It will be shown latter that the loss 'in-beam

formation is small or comparable to the deterioration caused by the basic beam

scan of the pushbroom itself. ^

The ̂ dimensions given in Figure 4.4 are for an antenna, which results in a

nominal 1(0 km spatial resolution with h = 787.5 km (kg = 43) orbit height.

For that situation Dg = 50.95 m, while D = 47.85 m The effective diameter

of antenna is 93.91% of the structural diameter and the antenna utilizes 88.2%
^

of the maximum available aperture area. .

Figure 4.5 depicts the boundary of the geometrical blockage associated to

the Figure 4.4 geometry. For this figure S = 1.4 m is chosen. This

represents the closest feed to the column. Additionally, Vj = 0.5 m and

vo = 0.2 m is selected. With 25% column transparency the geometrical

blockage caused by the column for the closest subarray is 0.76%. This

corresponds to 1.52% total efficiency reduction. For the subarrays, which are

further than S = 1.4 m away from the column the blockage loss is less, but

the scan efficiency is poorer.

It is relatively straightforward to calculate the radiation pattern or

gain contours of the above described antenna for a single radiating element.

However, for complicated subarrays the computation is quite lengthy.
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= 1732.7

= 52.'69.nf

'
= .76%

Figure 4.5 - Blockage caused by the column in single aperture hoop.column
antenna for S = 1.4 m s*ibarray location.
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Additionally, it Is somewhat difficult to compare complicated radiation

characteristics as a function of different design parameters.

Alternatively, it is easy to construct a computer model which calculates

the beam efficiency of the antenna on the basis of the phase distribution In

the aperture of the paraboloid. Using Figure 4.4 for a radiating element in

point C the path length to a general point on the reflector and to the end

point at the edge of the aperture is given by

T = [(Y - A')2 + (X + B)2]4/2 (4-1)

(4-2)

where

A = S sin i|>Q, B = S cos 4>Q, A
1 = F - A (4-3)

Using the above equations the x,y coordinates of the phase frorat can be

expressed as

x = X + R sin a (4-4)

l

- . • ' ' • - 0

y = Y + R cos a (4-5)

where
i

R = TM - T ' (4-6)

Once the phase front is known, the phase deviation relative to a best1fit

plane wave can be calculated. The results for various scan angles are shown

in Figure 4.6. The parameter of the curves is the normalized scan angle

aN = 9M/93 wtiere ®M is tlle angle between the wave normal and axis of

paraboloid and 9.o is the 3 dB beamwidth of the unscanned beam.
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F/D = 1.342, Q/D=.0203

8°
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Figure 4.6 - Phase error In plane of offset for various
normalized scan angles.
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Figure 4.6 assumes the geometry shown on Figure 4.4 and an

:A' + (1 - A')(l - r2)P , (4-7)

type of aperture distribution. With A = -14dB, P = 2, and 6-j = 0.339°.

0j^ is given by the direction of the normal of the best fit phase front.

6M~ a = tan'1 |- (4-8)
o •

where

It dan be seen from Figure 4.6 that the peak value of phase error 6

varies between 25° and 225° while o-^ varies between 3.43 and 20.56".

The effect of this phase error varies with the applicable amplitude

distribution in the aperture. Presently distributions with relatively large

aperture taper are of interest. Then for the phase distribution shown on

Figure 4.6 the rms phase error can be calculated by using a weighting

technique considering the field distribution. The high values of 6 in the

vicinity of XQ = 0.95 m have relatively little effect. The rms value of

6 is typically about half of the peak values observable arond X, = 5 m

and X2 = 32 m.

For large scan angles the described procedure predicts relatively large

rms phase error. The reduction of this pahse error requires the use of a feed

array instead of a single radiating element. When a single radiating element

is replaced by 3 radiating elements for the linear array case, then the

introduced 2 additional degrees of freedom can be utilized to synthetize 2

nulls in the aperture phase error distribution. When the location of these

nulls are selected to coincide with the phase error maximum at Xj and X£
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then the phase error function contains a total of 5 nulls, provided the

location of X practically represents a null. The amplitude of the peak.

phase error for this condition is reduced approximately by 2 relative to the

case for the single radiator.

For the actual antenna the phase error occurs not only in the plane of
\

scan, (plane of offset in the above example) but in two dimensions. Thus the

above level of phase error reduction requires compensating radiating elements

not just on the left and right side of! the center element, but all around

it. This quality of compensation therefore requires a 7-element feed

cluster. An additional approximately factor of 2-phase error reduction

requires the addition of two more compensating ring arrays, thus a total of 37

elements. From the rms phase error the scan loss associated to the residual

phase errors can be also computed. The gain loss can be expressed relative to

the uns canned beam. ,

For proper normalization it is first necessary to calculate the radiation

characteristics of the uns canned beam. Assuming that the basic feed produces

an aperture distribution of the type given in equation (4-7), the beam

efficiency can be determined from Figure 4.7. Since this is a relative

calculation, an arbitrary beamwidth reference can be chosen.

For the present purpose, using Figure 4.7

a 156. 8 o ' / /
DX

where 693% is t^e beamwidth within which 98% of the power associated to the

aperture of the ideal parabolid is contained. This 98% power limit will be

considered in the following as the ideal realizable maximum beam efficiency,

ngo« Any other losses, caused by spillover around the reflector, reflector

inaccuracy, blockage, scan loss is relative to this upper limit.
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Figure 4.7(a) - Beam efficiency versus normalized scan angle for various array
element numbers and array to column distance.
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Figure 4.7(b) - Beam efficiency versus normalized scan angle for various array
element numbers and array to column distance.
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Figure 4.7(c) - Beam efficiency versus normalized scan angle for various array
element numbers and array to column distance.
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Figure 4.7(d) - Beam efficiency versus normalized scan angle for various array
element numbers and array to column distance.
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For the above described ideal case 693% = 0.709°. The 3 dB beamwidth of

the antenna, 83 = 0.339°, thus 098%/93 dB * 2-09' '

It is practical to represent the antenna characteristics as a function of

the normalized scan angle, aN = 9M/93« Figure 4.8 shows the calculated gain

degradation (scan loss) as a function of a^ for n = 1, 7, 19, 37,- and 61

element subarrays for the case when the arrays are synthetized to give the

described null distribution in the aperture phase front in the paraboloid. It

can be seen that when 1 dB scan loss is tolerated the antenna can be scanned

up to an = 13 with n = 61. For such a conditions the swath of the antenna

is 3 = 2.<xN 8° - 8.81°.

The 'total beam efficiency for an ideal paraboloid with no splll'over

radiation: is

In Figure 4.7 S is the distance between the axis of the paraboloid and
"2

the line connecting the center of the subarrays in the pushbroom feed configu-

ration. The highest possible efficiency is achievable for S = 0, but in this

case the blockage is very large. S = 1.4 m seeatn to result a practically

acceptable geometrical blockage of 0.86%. (See Fig. 4.9.). Such a blockage

cause Pg£ = 1.72% loss of total power. When this blockage is considered,

then the modified form of equation (4-11) becomes i

If one desires to achieve HB = 85% then for nBo = 98% and

nB£ = (100 - PBfc)% = 98.28%, the tolerable ng is 88.25%. This allows

O ~ 10 or 3 = 6.78° swath.
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Figure 4.8 - Scan loss versus normalized scan angle for various feed array
element numbers.
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Figure 4.9 - Variation of geometrical blockage versus S.

68



Figure 4.10 gives another representation of the above data. It shows the

number of required elements in a subarray for a given swath angle 8 and scan

efficiency, ng. S = 0 is assumed for displaying this effect. It can be
>

seen from this figure that the number of elements in a subarray is very

sensitive to the required efficiency for large & values. For instance if

3 = 6° is required an improvement of scan efficiency from 80% to 90% requires

to increase the elements in the subarray from 19 to 47. Since the complexity

of the feed array is proportional with n such an improvement increases the

antenna complexity fy a factor of 2.47.

In a practical antenna the feed array complexity must be minimized by

selecting the minimum number of elements for each subarray for a given range

of beam efficiency.

Figure 4.11(a) shows the variation of beam scan efficiency and the size

of .applicable subarrays for various subranges of the total swath for S = 0.

The figure also shows the number of subarrays s of each type. According to

this figure for 6 = 11.18° swath a total of 31 subarrays are needed to

.achieve A^ = 8.98 km spatial resolution with h = 787.5 km height. The

scan efficiency at the edge of swath decreases to about 71% while the average

scan efficiency is approximately 83%. The above case is not practical,

because S = 0, thus would suffer from high blockage. Figure 4.11(b) shows

the situation when S = 1.4 m. This case does not allow the use of n = 1

type "subarrays" thus only n = 7, 19, 37, and 61 is employed. This increases

the total number of radiating elements. Furthermore, the average scan

efficiency is reduced to approximately 81%. However, the worst case

efficiency is still nearly 71% and the average blockage is approximately 0.5%.
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Figure 4.10 - Required radiating element number n versus total swath angle
26 for n-g = 0.8 and 0.9 beam scan efficiency.
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Figure 4.11(a) - Variation of beam scan efficiency and feed cluster size to
cover S = 11.18° with N = 33 beam for S = 0 a.
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Figure 4.11(b) - Variation of beam scan efficiency and feed cluster size to
cover 8 = 11.18° with N = 33 beam for S = 1.4 m.
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The variation of blockage as a function of S is inidcated in

Figure 4.9. This figure assumes that the rest of the geometry is as shown in

Figure 4.4 and the antenna Is designed for 3 = 11.18° swath (N = 33). Then

the worst blockage occurs when a subarray is closest to the column, the least

blockage Is applicable for the maximally scanned beam. The calculation

assumes 25% transparency for the column. This is an average transparency.

The transparency is a function of the structural design of the telescoping

column and can not be accurately calculated until a particular design is com-

pleted. However, the transparency is generally improving with increasing S

and scan position. For a given S the actual geometrical blockage is closer

to the worst case for the small scan angles and Icoser to the best case for

large scan angles. In order to make the blockage less dependent on the trans-

parency it is prudent to select relatively large S.

. .: Up to now the beam efficiency characteristics of the antenna have been

analyzed as a function of the number of radiating elements (feed points) n,

associated to a subarray. n determines the freedom for the synthesis, (the

number of points where the aperture phase front coincides with the pahse front

of the plane wave). Additionally, the location of the radiating elements In

the feed array must be selected.

In the following it assumed that all subarray elements are identical and

they form a hexagonal grid. Furthermore, the envelope diameter of the un-

scanned subarray is large enough that the subarray is capable to produce the

required distribution in the aperture of the paraboloid characterized by

Ax = -14 dB and P = 2. .

Figure 4.12 shows the results of the calculation for radiating element

6 S
diameter d,, and subarray diameter d,, as a function of n. The selection
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Figure 4.12 - Variation of radiating element diameter d| and subarray
diameter df versus n.
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f\

results in a realizable implementation, which avoids supergaining (d, too

small) and grating lobes (d? too large). However, it does not represent a

geometry, which maximizes the beam efficiency. The execution of a full opti-

mization is quite time consuming and results in a slightly larger d^ for

larger n. However, it is concluded that the value of such optimization is

academical, because it requires a larger overall array, than can be

Implemented within available space.

As was shown before the n values of interest are between 7 and 61. For

such cases the subarray diameter varies between 6.32 X and 11.45 X. Thus

the partial compensation of scan effects requires a 1.81 times increase of

subarray diameter within the range of scan.

On the basis of the previous calculations Table 4.1 summarizes the main

characteristics of the feed array for S = 0 and S =1.4 m. The table shows

the number of subarrays, s; feed points per subarray, n; total feed point

p o

per type of subarray, q; d, , d,, the number of patches, P, necessary to

realize a given df diameter radiating element and the total number of

patches, t, used for each type of subarray.

It may be noted, that the selection of the number of patches to realize a

given radiating element diameter must satisfy the geometrical requirement of

patch resonance and avoidance of grating lobes. Figure 4.13 shows the layout

to realize the df diameters used in Table 4.1.

The complexity of the overall feed array is characterized by the number

of feed points, by the total number of patches and by the surface area on

which they array is built. The minimum array complexity is achieved when

?
S = 0, which results 87.56 ra active array surface and t = 4153 patches.

Due to blockage this is not acceptable for small scan angle subarrays.
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Figure 4.13 - Realizable feed layout for single aperture design.
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However, the S = 1.4 m feed array position results in only a small increase
f\

of complexity yielding 92.77 ra active array surface and t = 4408 patches.

The feed array layout shown on Figure 4.16 refers to this case. It can be

seen from this figure, that due to the support requirement of the active array

surface the actual array surface is 128.35 m2. This is 6.29% of the overall

aperture of the hoop column structure and 7.41% of the antenna aperture. It

is clear, that such a large array apertue area cannot be accomodated in a

symmetrically feed paraboloid. However, with the offset feed reflector, the

array blockage is eliminated and only the column related 0.5% (average)

blockage remains.

It must be emphasized, that all the above data are derived on the basis

» ! -. .

of a relatively simple mathematical model.

In order to assess the accuracy of the utilized model some additional

exact calculations have been performed for a limited number of examples.

Figures 4.14 and 4.15 show the gain contours for a singlet (n = 1) using

d^ = 2.42 at «N = 0 and 7.2, respectively.

TEjj mode excitation is assumed in the aperture. The calculated scan

loss is 6G = 3.5 dB for this case, while the simple model predicts

<SG = 3.4 dB. (See Fig. 4.8.) The gain contours of 4.14 indicate that the

extent of significant pattern distortion due to scan extends to an angular

radius of ~26_ from the main beam maximum. Thus the compensation of such a

scan caused distortion would require at least two rings of elements around the

center element. This results in a 19-element array for which Figure 4.8

predicts a relatively negligible 0.5 dB of scan loss.

Figure 4.16 shows other data points corresponding to n = 1, df .= 2.07,
A

and aN = 6.6. The exact scan loss is 6G = 2.42 dB for this case,

practically identical to the approximate value. (See Fig. 4.8.)
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Figure 4.14 - Gain contour of singlet feed df = 2.42, ON =x0.
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Figure 4.15 - Gain contour of singlet feed, df = 2.42, ctM = 7 . 2 ,A IN
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Figure 4.16 - Gain contour of singlet feed, df = 2.07, »N = 6.6.
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The character of the gain contour is very similar to the one shown in

Figure 4.15. However, the two figures together prove that the scan loss for a

singlet for large a^ is very sensitive to a^. Significantly, the two exact

data point defines very closely the same scan loss slope as the approximate

model. The calculations also indicate that the diameter of the radiating

element has relatively minor effect.

Figure 4.17 gives an example for a 7-element cluster utilizing an average
«

of 3% power on the outer ring of radiators. In this case n = 7, d, = 2.47,

d, = 7.4, and ON = 5.04. The scan loss is <5G = 0.66 dB versus
A ^ * - -

6G = 0.60 dB obtained using the approximate calculations.

Figure 4.18 presents the results for a uniformly excited 7-element array

using df = 1.31, df = 3.93, and ON = 3. The exact scan loss is

6G = 0.40 dB verus 0.3 dB using the approximate model.

Finally, Figure 4.19 prsents the exact results for n = 15, employing

d^ = 1.31, d^ = 5.82, and «N = 3. The predicted scan loss is 6G =0.15 dB,

the same value as calculated from the approximate model using n = 19.

(See Fig. 4.8.)

It can be concluded from the above calculations that the accuracy of the

approximate model is well within the accuracy limits necessary for tradeoff

calculations. .

In summary, the single aperture concept results AXM = 9.5 km spatial

resolution, when D = 50.95 ra structural diameter is utilized and

h = 787.5 km. The antenna is capable to form N = 33 beams with an average

beam efficiency of 81% provided the paraboloid surface is exact. 33 beams

cover a swath of 11.18°, which for a polar orbit would result in 59% coverage.

Thus in an operational configuration, 2 spacecrafts would be needed to provide

practically complete coverage.
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Figure 4.17 - Gain contour of septet feed, d? = 2.47, d? = 7.4, aM = 5.04.
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Figure 4.18 - Gain contour of septet feed, df = 1.31, 3.93, aN
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Figure 4.19 - Gain contour of 15 element feed, d® = 1.31, d® = 5.82, <XN = 3.



It is interesting to note that XM = 9.5 km resolution with the above

type of antenna is achievable if D = 15 ra, h = 375.4 km, and f =2288 MHz.

Such a combination can be implemented as a scale model Shuttle experiment to
! :

verify the orbital characteristics of a single aperture design.

4.3 Double Aperture Concept

There are a nuraer of configurations by which the beam number limitation

of the single aperture concept can be reduced. Figure 4.23 shows geometries

utilizing two subapertures. In these configurations the structural diameter

of the antenna is adjusted in such a manner, that the spatial resolution of

the system is maintained at approximately 10 km. This requires an

approximately two fold increase of the structural'diameter relative to the

single aperture concept discussed in Section 4.2 and shown in Figure 4.4.

Figure 4.20 exhibits the aperture layout of the antenna utilizing sub-

apertures A and B. These are displaced relative to each other in the

direction of flight. The apertures are realized by identical offset feed

paraboloid segments, with axes parallel to the axis of the column and with

focal points at F^ and Fg, respectively. The subarrays of the feeds are

displaced in the perpendicular to flight direction. For such a situation the

beams of subapertures A and B are capable to cover the same cell. The

configuration has no more scan capability than the single aperture concept

depicted in Figure 4.4. However, it eliminates the direct blockage by the

column. Furthermore, the subarrays can be placed closer to the column, thus

they require less supporting and deployment structure. The two subapertures

can be utilized to reduce feed crowding, or introduce dual polarization, dual

frequency band or two antenna receive/transmit capability.
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Figure 4.20 - Double aperture antenna concept employing symmetrical
configuration.
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In the arrangement shown In Figure 4.21, the plane of offset is rotated

by an angle Y relative to the plane of flight. This allows to scan the

beams from subapertures : A and B to the right and left from the flight

plane, respectively. Consequently, for a given subarray size and quality of

beam the configuration nearly doubles the achievalbe swath. In practice a

full doubling of the swa^h may not be possible, because there is not enough

space to package the fee'd within the constrains of the spacecraft. Neverthe-

less the arrangement can, accomodate increased number of beams relative to the

single aperture configuration. :
'\

The difficulty of this setup is the implementation of the necessary

paraboloid reflector segments. In order to maximally utilize the available

structure it is desirable to illuminate the entire half of the reflector in

Figure 4.21 for the "forward" beams and the lower half for the "backward"

beams. However in this case due to the large distance between focal points

F^ and Fg a relatively large step develops at the border between the two

reflector segments. This causes a mechanical implementation difficulty and

undersirable diffraction. The diffraction effect can be reduced by more

illumination taper, but this -decreases the aperture efficiency and increases

the beamwidth.

: Figure 4.22 shows a compromise. This eliminates the step between the

reflector segments yet it retains some of the advantage of the Figure 4.23(b)

setup. The layout is similar to the one shown in Figure 4.23(a), but the

entire space craft is rotated by T angle relative to the flight direction

and the axes of the reflector segments are tilted in the plane of offset away

from the axis of the column. In this situation the beams from subaperture

A are titled forward relative to the flight direction in the left hemisphere.

The net result Is a set of footprints on each side of the flight path.
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Figure 4.21 - Double aperture antenna concept employing rotated offset planes.
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Figure 4.22 - Double aperture concept employing rotated aperture relative to
flight direction.
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Figure 4.23 - Footprint geometry of the Figure 4.22 double aperture antenna.
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The structure has two symmetry planes, simplifying the electrical and mechani-

cal design. There is a sharpe edge, but no step at the Intersection of the

reflector segments. The total swath is typically two times larter than for

t

the equivalent single aperture.

In the following the configuration depicted in Figure 4.22 will be

further analyzed.

Figure 4.23 exhibits the geometry of the footprint assuming h = 787.5 km

and a subaperture diameter of D = 47 ra (these are similar values to the ones

used in the example for the single aperture implementation). The offset of

the paraboloid reflectors is in the PQR plane which is rotated by T = 17.25°

relative to the vertical, plane containing the flight vector v. When the axis

of the two paraboloids in the PQR plane are tilted by ±u> = 24.61° then the

footprint of a beam at Q has a minimum dimension of X = 9.87 km. This

corresponds to the 6937 = 0.653° beamwidth of the ideal, unscanned beam.

The maximum dimension of the footprint is XM = 10.86 km.

The centers of the footprint are on a circle with 360.7 km in radius

measured from nadir. The footprints from subaperture A are on the SQT arc

on the left side of the ground track while the footprints from subaperture B

are on the VRW are on the right side of the track. Assuming ±11 scan position

(N = 44 beams) the total swath is S = 408.6 km.

Figure 4.24 shows the geometry of optics necessary to implement this beam

configuration. The upper part of the figure displays the profile of the off-

set feed paraboloid reflector in the plane of offset for one of the subaper-

ture implementation. The second subaperture is symmetrical relative to this.

The paraboloid axis is tilted by to = 24.61° relative to the axis of the

column. Its focal point is 1.4 m away from the axis of the column in order to

assure the necessary clearence between the feed array and column.
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= 49.466, V0 = 11.839

Dimensions in meter

=100.41 m
D = 47.01 m
F = 63.046 m
Q = 25,959m
F/D=T.341
Q / D = .5522
A = 4m
B = 11.73m

Figure 4.24 - Geometry of optics of the Figure 4.22 double aperture antenna.
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F = 63.064 m is selected, for which the required D = 47.01 m subaperture

diameter yields F/D = 1.341. These selections result in a structural

diameter of D0 = 100.42 m. The two subapertures utilize 43.83% of thes

achievable structural aperture area assuming that the projected subaperture

shape in the direction of the electrical axis is a circle. A little better

utilization is possible if the subaperture shapes are elliptical.

The nominal feed array width is A = 4 m (in the plane of offset) and

its length is B = 11.73 m.. Further details are exhibited in Figure 4.25.

The center of the feed array does not coincide with the focal point in order

to minimize the clearence requirement for the feed and the necessary offset Q

for the paraboloid.

The system has a comfortable large F/D. This is advantageous to main-

tain good quality for the scanned beams. However, it has a large

Q/D = 0.552, which reduces the achievable beam efficiency. The large Q

value is the consequence of the large u> value, which is necessary to

accomodate the selected number of beams, N = 44. In the vicinity of

N = 44 A/D is approximately proportional to N. Thus a reduction of N to

40 reduces Q/D to ~0.5. For such condition an overall improvement of the

quality of all beams is possible at teh expense of about 10% swath reduction.

The optics shown in Figure 4.24 is scanned perpendicular to the plane of

the drawing. Since the beam centers must be ®QRV away from each other and

the subarray size must be increased as the beam is scanned a staggering of the

subarray layout is necessary in the direction of flight. (See Fig. 4.25.)
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Figure 4.25 - Feed array layout of the Figure 4.22 double aperture antenna.
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Table 4.2 contains some of the subarray characteristics. According to

theis table, four different types of subarrays are necessary, containing 1, 7,

19, or 37 radiating elements. The radiating element designs are similar to

3

the ones shown in Table 4.1, except for the 37 element subarray. For this a

slight reduction of diameter is necessary to fit the subarray within the

2available overall array diameter. N = 44 requires 84.77 ra active array area

2
within the nominal 93.84 m overall feed aperture surface. 4600 patches are

needed to implement the system.

It is interesting to compare these figures with the corresponding values

for the N = 33 beam, single aperture system. It can be seen that the array

2surface is considerable less for the:two aperture cases (93.84 m versus

2128.35 m ) while the number of patches increases from 4408 to 4600. The main

difference of course is a drastic increase of structural diameter to 100.4 m

from 50.95 m. The 1.97 times increases structuraldiaraeter yields 1.33 times

more swath, reduced column scatter and generally better beam efficiency.

The beam efficiency variation as a function of scan position is shown in

Figure 4.26. The average beam efficiency is n_ 87.6% instead of the 81%
B •

calculated for the single aperture system. The resultant swath results in

approximately 85.5% coverage.

It is interesting to compare the structural characteristics of a single

aperture system, using two spacecrafts with a dual aperture system using one

spacecraft for approximately equal performance. This is shown in Table 4.3.
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Figure 4.26 - Variation of beam efficiency with scan position of the
Figure 4.22 double aperture antenna.
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TABLE 4.3

Comparison between the one and two subaperture systems

Total Total Average .
structural feed beam No. . Weight
aperture surface No. of efficiency of Coverage M Ref. Feed

System m m patches % beams % km kg Total

Single

aperture 4077.6 256.7 8816 81.0 66 83.2 9.5 542 1027 1569
2 space-
craft

Dual
aperture 7916.9 93.34 4600 87.7 44 85>5 10.9 1053 375 1428
sapce-
craft

In Table 4.3 the coverage for the two spacecraft system is calculated on

the basis of a simple product probability model. It is believed that with

proper orbit optimization near 100% coverage is achievable for the two space-

craft system, thus this system has at least the same coverage as the .dual

aperture system. It is clear from Table 4.3 that the main difference between

the two systems is in the total weight and complexity related to the reflector
f\ f\ • .

surfaces and feed arrays. Assuming 0.133 kg/m and 4 kg/m for the weight of

the reflector and feed, respectively, the total weight to be placed in orbit

for the reflector and feed components is 1569 kg and 1428 kg, respectively.

While these total weights are comparable it is obvious that the launch weight

of the single aperture system is about a factor of 2 less. Additionaly, the

single aperture system has better reliability (due to spacecraft redundancy).

The differences in beam efficiency, coverage and resolution are small compared

to the inaccuracy of calculation, thus they may be considered as approximately

equal. On the basis of the above considerations both the single and dual

sperture implementations can be potential solution for the desired system.
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4.4 Triple Aperture Concept

4.4.1 Geometry

The1 main difficulty of the dual aperture concept is the relatively large

paraboloid offset requirement (Q/F = 0.55). The offset can be reduced (by

approximately a factor of two) if the structural aperture is divided into

three subapertures. For this situation the number of beams can be further

increased or/and their quality improved at the expense of some further

increase'of the structural diameter.

Figure 4.27 shows the front view of the aperture, while Figure 4.28 ,

displays the geometry of the No. 1 reflector segment in the plane per-

pendicular to scan. Figure 4.29 gives the geometry of the No. 2 reflector

segment in the plane of scan. '

In this configuration three reflector segments are implemented within the

overall structural envelope. Each of these reflectors are offset feed

paraboloids.

The offset plane of the No. 1 reflector segment is in the plane of

flight, which is also a symmetry plane of the overall antenna. The axis of

this paraboloid in the selected example is parallel to the axis of the column
j . .

and has | a focal distance of Fj = 65.989 ra. Its focal point is 2.5 ,111 away

from the .axis of the column and its offset is characterized by a

A/Djj = 0.152. Assuming a structural diameter of Dg = 118 ra the a^bove

selection provides a subaperture diameter of DJJ = 49.057 m in the direction

of flight, and F/Dn = 1-345. It can be seen that the subaperture diameter

ana F/Dij ratio of this geometry is practically the same as for the analyzed

two subapertures system, but the Q/Djj ratio is greatly reduced.
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Figure 4.27 - Geometry of optics of the triplet aperture antenna, front view.
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DJ-, = 54,06m
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Figure 4.28 - Geometry of optics of the triplet aperture antenna for
No. 1 reflector in plane of scan.

100



Figure 4.29 - Geometry of optics of the triplet aperture antenna for
No. 2 reflector in plane of scan.
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The No. 1 reflector provides the beams for the center part of the

composite swath. In order to achieve this the beams are scanned perpendicular

to the plane of offset. This is accomplished by a feed array, with a nominal
7

rectangular envelope of A = 15.53 m length and B = 2.69 m width, when

projected to the structural aperture plane. Within this array envelope a

total of !±9 beam positions are accomodated covering a total! of ±6.75° swath.

The [minimum diameter of the utilized aperture is DJJ. However", allowing

some increased spillowver radiation around the hoop, the effective utilized

aperture can be slightly increased. The optimum equivalent subaperture

diameter than is Diav = 55.4 m.

The No. 1 and No. 1 subaperture geometries are symmetrical to the flight

palhe, thus it is enough to discuss the No. 2 system only. The offset plane

of the corresponding parabolid encloses 120° angle with the flight plane.

The axis of this paraboloid is tilted by 13.807° away from the axis of the
j

column. (See Fig. 4.29.) The unscanned beam of this reflector is at 13.81°

from the unscanned beam of reflector No. 1.

The beams of reflector No. 2 cover the right side of the swath. This can

be accomplished if the reflector is scanned in the plane of offset. That

requires a clearence of the large dimension of the feed array, thus a larger

offset. The combination of larger offset and the tilt of paraboloid axis

reduces F2/D2. For the selected geometry D2 =52.75 in, F2 = 58.20 m,

Q2 = 11.7-m resulting F2/D2 = 1.10 and Q2/D2 = 0.223. As in the case of

reflector No. 1 it is feasible to increase the effective aperture diameter „

to D2= 54.72 m, by allowing some increased spillover radiation.

While it is possible to place the large dimension of the feed array into

the planeiof offset the footprint geometry can be improved if the feed array

is tilted by 15° relative to this plane. In such a configuration the. plane of
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scan is only 15° away from the perpendicular to flight direction, thus the

covered swath increases and a slight improvement in spatial resolution is

feasible. Furthermore, such rotation results in more compact feed array

packaging, figure 4.27 shows this configuration. According to the detailed

analysis, a feed array with A = 13.67 m and B = 3.03 m envelope dimension

can accomodate a total of 17 beams with acceptable quality. These beams cover

the 6.75° to 19.5° part of the overall swath.

?The entire 3 subaperture system requires 10935 m structural aperture
2

area. Out of these the No. I subaperture utilizes 2410.5 m , the No. 2 and

No. 3 subapertures 2x2351.7 m = 4703.4 m^, thus the total utilized aperture is

7113.9 m2 (65.06%). The system is capable to produce 18 + 2 * 17 = 54

beams within a total swath of ' 23 = 39°.

It may be noted, that the design shown in Figures 4.27 through 4.29 can

be somewhat simplified by making the geometry of the three reflector segments

identical. Then the main reflector system ahs three symmetry planes, 120°

apart from each other. In this configuration the axis of the No. 1 reflector

is 13.807° forward tilted and its F/D ratio is reduced from 1.345 to 1.1.

The consequence of these changes is a reduction of beam quality and an

additional deterioration of resolution. In this scheme the feed design is

etill different for the No. 1 and No. 2 reflectors. It is believed that the

advantage in simplifying the mainreflector design is not justifying the

deterioration of electrical performance, thus the single symmetry plane

appraoch was selected for the baseline design.
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4.4.2 Main Characteristics
i

. For the optics geometry given in Figures 4.27 through 4.29 the main

characteristics of the antenna have been calculated for N = 54.

! The results are in Table 4.3. The following is the definition symbols in
1 '

this; table.
I '

ra = beam number
!

A0g '= separation between beam centers in plane of scan '

6 = scan angle * • .
o

X = distance between focal point and phase center of siibarray in -
plane of scan

Xx = X/X , .

n = number of elements in subarray

A = edge taper in subarray

o p
P = from factor of subarray taper for A+ (1-A (1-r ) type aperture

distribution

d = diameter of subarray

TI_ = spillover efficiency
O

Aant = taper at edge of paraboloid

93»eiO'®15 = ^ ̂ B' ̂  ^B anc^ ̂  ^B angle of main beam without considering
scan caused nonlinear phase errors

Tig = beam efficiency for indicated beam crossover levels without phase
errors

ig = beam efficiency with scan caused phase errors for ideal surface accuracy

riflA = beam efficiency due to practical surface (A =3.82 mm, rms = 0.018A,rms)

Hgn = resultant beam efficiency with scan errors, surface errors but
neglecting cable scatter
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Table 4.3 - Main Characteristics of Triplet Subaperture Radiometer

Beam

3.85 TITO = .154 inch, rms
Subarray dvracteristics without phase errors
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For the calculation In Table 4.3 the number of elements in the, subarray

have been Increased with scan angle In a nearly monotonous manner. For small

scan angles the envelope diameter of the subarrays is. somewhat larger than in

the example shown in Table 4.1. Such an increase is feasible without signifi-

cant increase in complexity, (the supporting surface for these elements must

be provided anyway for structural reasons). The choice results in some

improvement in beam efficiency for small scan angles relative to tfhe case in

Table 4". 1. For large scan anbles the subarray diameter is reduced. This

compromize is introduced because otherwise it is not feasible to increase the

beam numbers from 44 to 54 due to feed packaging limitations. In the case of

reflector No. 1 the reduced subarray size for large scan angles does cause a

moderate deterioration of beam efficiency, while the average beam efficiency

is about the same as for the case shown in Table 4.1. For reflector No. 2 the

deterioration is larger, because the optics has a lower F/D and the beams

are scanned to a general position relative to the plane of offset.^ The

average, beam efficiency of the system is about the same as for the case in

Table 4.1 because the maximum scan position is only 9 instead of 12. When the

surface accuracy of the reflector is considered (A = 3.82 mm, rras^then the

resultant beam efficiency of the system is 85.4%. It can be concluded that

the 3 subaperture system is capable to produce similar beam efficiency and

spatial-.resolution to that of the 2 aperture system, but with a 54/44 = 1.33
?

times Increased swath. These results, however, require a structural diameter
il

increased by 118/100.4 = 1.175.

It can be seen from Table 4.3 that with increasing scan angle the beam-

width of the scanned beam increases. This is an inherent characteristics

associated to the increasing aperture phase error and increased aperture

taper. In reflector No. 1 the 15 dB beamwidth (approximately equal; to the
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beamwidth within which 98% of all the radiated power is contained) varies

between 0.164° and 0.725°. The angular separation between beam centers is ;

adjusted to these angles and varies between 0.60° and 0.74° in order that the

maximum practi al swath is realized. The combined swath of the 3 subaperture

system is 28 = 37.20° using the subarray locations given in Table 4.3.

According to Figure 3.11 the 54 beam system gives c = 88.8% average coverage

for H = 787.5 km orbit height.

The worst resolution occurs for the maximally scanned beam of reflector

No. 2. In the plane of paraboloid offset the footprint dimension is 10.87 km,

while in the perpendicular direction it is 10.32 km. The best resolution is

for the minimally scanned beam of reflector No. 1. This footprint has approx-

imately 8.44 km diameter. It may be mentioned that due to the synthesis pro-

cedure selected for the subarray excitation optimization, the deterioration of

beam, efficiency with scan angle has only a second order effect on the achiev-

able spatial resolution. The main beam widening effect comes from the

Increased aperture taper.

The above technique assures, that the deterioration of spatial resolution

with scan angle is only 10.87/8.44 = 1.29. At the same time, the deteriora-

tion in noise temperature resolution is considerably more. For the minimally

scanned beam of reflector No. 1 7.5% of all power is outside the defined ;

footprint. For the maximally scanned beam of reflector No. 2 24.1% of the

power is outside the beam. The deterioration in lost power is given by the

24.1/7.5 = 3.21 ratio. Not much can be done against the deterioration of beam

efficiency in the 3 subaperture system for the selected N. A larger F/D or

better formed beams would require larger feed array, which cannot be accomo-

dated in the given STS envelope. Thus an improvement in temperature resolu-

tion can be achieved only by a reduction of the number of beams.
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It must be noted, that the above beam efficiency calculation assumes no

spillover loss around the reflectors. Actually the calculated spillover

efficiency varies between 98.5% and 99.5%. This efficiency component further

reduces the gain but practically it does not influence the noise temperature

resolution of the antenna since this radiation component generally does not

hit the surface of the Earth. Thus the effect of spillover efficiency is

neglected in the above beam efficiency calculations.

4.4.3 Feed Design

The major implementation problem of the soil moisture measuring radionr-

eter system is concerned with the design of the feed array. While the struc-

tural complexity related to the antenna optics is characterized by the

diameter of the hoop and accuracy of the reflecting surfaces once this problem

is solved, the optics may be usable for a number of missions. The feed array

on the other hand is specific for a given application and its design must be

developed individually for each mission.

The dimensions of the feed array are an order of magnitude less than that

of the reflector. However, its weight per area ratio is typically two order

of magnitude larger thus the reflector and feed array weight is comparable.
4

Since for space application weight is usually proportional to complexity and

cost, it can be suspected that the design, fabrication, and test complexity of
»

the feed is comparable to that of the reflector.

The-feed for the present application includes the radiating elements, the

beam forming network, the radiometer receiver and the support-deployment

mechanism. The design of each of these subsystems is relatively complicated

and are strongly dependent on each other.
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In the following a brief outline of these design problems will be given.

No attempt will be made to derive a fully optimized design. However, it is

believed that the presented examples are representative to actually achievable

designs.

The first step of the feed design is the development of the overall feed

array layout. This layout is characterized by the subarray phase centers

associated to the individual beams. In Table 4.3 the location of the phase

center in the direction of the long dimensions of the overall array is given

by X; where X is the distance from the center of the overall array. Since

the subarray dimension in the direction of X is generally larger than the

separation between phase centers, the subarrays must be displaced in the

perpendicular to X direction in order to avoid subarray overlap. (Overlap

in principle can be utilized and may be actually implemented in an actual

design to some limited situations for the purpose of reducing the overall

envelope.of the feed array. However, such technique Is greatly increasing

complexity and loss and will not be considered in the following.) For the

given X values and subarray nominal diameter, d the location of the sub-

array phase centers can be calculated. Figures 4.30 and 4.31 show these

locations for feed No. 1 and No. 2, respectively, on the basis of the data

displayed in Table 4.3. It can be seen that the phase centers of adjacent

beams are separated by ± displacements in the Y direction and the displace-

ments increase with increasing scan angles. That causes increased width for

the array with increasing distance from the focal point, a structurally un-

dersirable feature. In order to assure structural stability the center part

of the array must be properly streamlined, causing a less than Ideal utiliza-

tion of the available surface, to support radiating elements.
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Figure 4.30 - Conceptual layout of the No. 1 feed array for triplet
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Figures 4.30 and 4.31 indicate that the layout for the feed arrays Is

similar; However, the layout for feed No. 1 is symmetrical, while the layout

at feed No. 2 (in fine detail) is not. There are 9 different subarrays in

feed No.' 1 while all 17 subarrays are different in feed No. 2. This requires

ideally "26 different subarray designs.

In factual practice some standardization might be possible. Selecting an

identical, compromized symmetrical layout for both feeds changes the beam

center locations only slightly. Furthermore, a compromize excitation for

corresponding elements might be acceptable at the expense of some reduction of

beam efficiency. In this case a minimum of 9 subarray designs are (adequate.

Finally,; by replacing two adjacent subarray designs by the more complex of the

pair, a total of 5 subarray designs might suffice.

The next step is the determination of the subarray layouts. Generally

the quality of beam formation for a subarray improves iwth increasing number

of radiating elements, n and with Increasing subarray envelope diameter, d«

The determination of n,d and the complex amplitude excitalon of the

elements requires a series of pattern synthesis for each subarray within an

n,d matrix. The first approximation of the optimum n and d values can be

determined by the following steps:

1) Calculate the secondary pattern gain contours by placing a single

radiating element at the1 location of the desired subarray phase center.

2) Select the gain contour which corresponds to the acceptable secondary

pattern sldelobe level. ' •

3) Place additional radiating elements around the original element in

such a way that the corresponding component beam centers form a sufficient
~ k

grid within the selected gain contour.
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4) Determine the element excitations using the ralnimax procedure which

reduces maximum gain and given sidelobe level in the vicinity of main beam.

, 5) Calculate beam efficiency.
t *

» ,

6) Stop if beam efficiency is acceptable, and

7) Increase n and d and repeat the procedure unitl beam efficiency is

above desired value.

The above procedure is not terminated, because with increasing n and

d any less than unity beam efficiency can be achieved. Thus, it is necessary

to consider two additional constrains. The first constrain is that the loss

in the BFN increases with n. This yields a specific n for which the beam

efficiency of the lossy antenna is maximum. The second constrain is the

practically acceptable subarray size. This presents an upper limit for

acceptable n. The above constrains cause a reduction of achievable beam

efficiency with increasing scan angle. ,

The results of the above calculations and some additional practical

considerations are shown in Figure 4.32. It is assumed for this figure that

the radiating elements are placed into a hexagonal grid. For each subarray

the grid size is given by the desired overall subarray envelope dimensions, by

the realizable descrete number of radiating elements and by the minimum

element distances due to resonance, mutual couling and grating lobe considera-

tions. The actual envelope shape of the subarray layout is determined by the

gain contour shape in the secondary pattern and by the criteria to avoid feed

overlap. It can be seen from Figure 4.32 that the feed points of the smallest

such array (n = 18) are within a 1.2 n x 1.80 m envelope, while the feed

points of the largest subarray (n = 41) are within 1.7 m x 1.62 m.

Figures 4.33 and 4.34 show the layout of the integrated array utilizing

the geometry of the subarrays given in Figures 4.30 - 4.32. It can be seen
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Figure 4.33 - Layout of feed array No. I for triplet aperture antenna.
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that the array supporting surface is well utilized, however, some further

increase of subarray sizes is feasible if a more refined design shows suffi-

cient benefit. Unfortunately, for the last 4 beam positions any substantial

subarray size increase would cause subarray overlap. It must be noted, that

if such an overlap involves low level excitation elements then the effect of

increased internal noise temperature may be tolerable for better sidelobe

control. However, generally such an overlap must involve frequency or time

division techniques. (For instance if a radiating element must be shared

between beam 8 and 9, such sharing may be achieved by switching the element

back and forth between the two subarrays. In this situation the contribution

of this element on an integrated basis will be 3 dB less than a full time

available element. This can be compensated by increasing the amplitude

excitation of the element by 3 dB. Similar effect can be achieved if the

element is not switched but its power is divided equally between the two

subarray.) ,

The next step of the subarray design is the selection of the radiating

element. The most convenient radiating element for linear polarization is the

printed resonating patch. There is great freedom in the selection of patch

geometry from rectangular to elliptical contours of which the square and

circular shapes are special cases. Table 4.4 shows the conditions of first

resonance for rectangular patch geometry.

TABLE 4.4

Conditions of first resonance with rectangular patch

aA k\ a/b

0.2567
.3315
.4813
.7613
1.0050

0.3054
.3034
.3016
.2994
.2988

0.8404
1.0920
1.5959
2.5547
3.3629
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It can be seen from Table 4.4 that for a/b ~ 1 (square patch) the

element1resonates If b ~ 0.304 A = 6.45 cm. The equivalent circular patch

has a diameter of d = 0.387 A = 8.21 cm. These resonant dimensions can be

reduced by dielectric loading, but the resonant dimensions can not^be in-

creased. For the described subarray layouts shown in Figure 4.32 the radi-

ating element separation is typically in the.order of 1A. Thus, a single

patch may not fill in the area contemplated for the readiatlng element. This

could cause undersirable grating lobes. Based on these considerations, it may

be desirable to use more than one combined patches as a single radiating

element.' Figures 4.35, 4.36, and 4.37 show examples for radiating elements,

which are composed from 1, 3, and 12 patches, respectively. These patches are

usable for up to 1, 1.5, and 3 wavelength separations between radiating

elements. The patches in these configurations are combined Into a single

radiating element by a microstrp line, which is printed on the same substrate

as the radiating element. This solution has the advantage of simplicity, but

the stripline segments contribute to the radiation and cause some asymmetry In

the element radiation pattern. These asymmetries can be reduced by the rota-

tion of the radiating elements relative to each other within the subarray.

further reduction of this effect is possible for the present application due

to the large number of elements even in the smallest subarray. Based on these

considerations the above patch combining techniques seem to be acceptable.

The>next step in the subarray design is the selection of the BFN layout.

The typical criteria for this is minimum weight, loss and cmplexity with

acceptable structural and thermal performance.
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Figure 4.36 - Composite radiating element for 1.5A element separation.
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DIMENSIONS IN WAVELENTH

Figure A.37 - Composite radiating element for 3X element separation.
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Low weight requires minimization of the nuber of printed layers on which

the BFN is implemented and the use of minimum thickness substrates. In order

to achieve the above, the area for the stripline must be minimized.' This

requires the minimization of stripline center conductor width, as defined in

Figure 4.38. With decreasing w and constant stripline height b the

impedance of the stripline increases rapidly and becomes very tolerance

sensitive. If additionally b is also reduced, the loss increases (see

Fig. 4.39). Thus a reduction of weight is always accompanied byb increased

losses. . In other words a given loss defines the real estate requirement for

the strlpline.

Another parameter which effects the BFN design is the separation between

radiating elements. For larger element separation more space is available for

the striplines, thus their loss per unit length decreases. At the same time,

the length of the lines increases which increases the loss. The optimum

selection requires a detailed design optimization.

. In the following two design approaches are compared. The first approach

is shown for the n = 41 element subarray. This is based on the use of as

much as possible real estate in order to reduce losses. The approach leads to

a relatively large number of multilayer boards. While the loss within one

board is relatively low, the connecting lines between the tandem connected

boards increase the combined loss. This design is analyzed for d = 1.18A

and d = '. IX radiating element envelope diameter. The second approach is

shown for n = 18 and n = 41 element subarrays. The goal of this approach

Is a single board BFN implementation. The loss in this case Is determined by

the available area for strtplines and power dividers. It must be noted that

In each case a considerable part of the total loss Is associated with the

delay lines, which are necessary to implement the essentially equal phase

excitation of the radiating elements.
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Figure 4.38 - Variation of strlpline area requirement with str lpline
Irapedence.
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Figure 4.39 - Variation of stripline loss with stripline thickness.
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Table 4.5 displays the main characteristics of the multiboard design.

This design utilizes a triplet radiating element as shown in Figure 4.40.

TABLE 4.5
Subarray geometry for n = 41 radiating elements

(For max. scan [beam 9] in triplet antenna configuration.)

Design 1: de = 1.18X, triplet element, (LP)

dsubarray = 6'13X

aBFN = °'413 dB

Design 2: de = U, singlet element (LP or CP)

dsubarray = 5'20X

aBFN ~ °-363 dB

Sandwich, thickness in each case is 8.93 cm.

Figure 4.41 shows the layout of the radiating elements of the subarray.

These are supported by board No. 5. Figure 4.42 presents the corresponding

BFN block diagram. This network is broken down into four separate boards.

Figures 4.43 through 4.46 give the basic layout of these boards. It can be

seen that the layout of these boards allows a generous allowance for the

individual striplines. Figure 4.47 shows an example for the cross section

geometry, to minimize losses. It can be seen that the total calculated loss

in the BFN is 0.41 dB, including hybrid and connecting coaxial line losses.

The overall ass'y thickness, shown in Figure 4.48 is approximately 3.1 inch.

This accoraodates the radiometer boxes.

Similar calculation have been conducted for d = 1^. In Figure 4.49 the

layout of Board No. 1 is included only. The arrangement results a loss of

0,36 dB, which is only slightly less than for the d = 1.18X design. It can

be calculated that the achievable loss in the BFN for the investigated range

of d is not very sensitive to radiating element separation.

A somewhat more detailed analysis have been performed for the single

board BFN implementation.
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Radiating element design
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Figure 4.40 - Composite element layout utilized for linearly polarized
41 element subarray design.
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Figure 4.41 - Subarray layout for multilayer, n = 41 element subarray design
(board 5).
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Figure 4.42 - Block diagram of BFN for the n = 41 element subarray of the
No. I feed, multilayer implementation.
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Figure 4.44 - Layout of Board 2, for d = 1.18
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Figure 4.45 - Layout of Board 3, for d = 1.18X,
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Figure 4.46 - Layout of Board 4, for d = 1.18X.
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d?

Loss characteristics:
:. Line loss (L = 3.08 m,cx0 = .055 dB/m)

Total hybrid losses (.05 dB/Hybrid)
Coaxial lines (.005 dB/section)

Total BFN

Thickness characteristics:
Radiating element (A/8 above ground) 2.65 cm
4 BFN boards 6.28 cm
Maximum array thickness 8.93 cm
Array thickness at radiometer box (3 layers) 7.36 cm
Radiometer box height allowing 6in= 15.24 cm
overall ass'y thickness 7.88 cm = 3.1 in

Figure 4.47 - Cross section geometry of BFN stripline and applicable loss
characteristics.
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Figure 4.48 - Cross section of the integrated multilayer BFN.
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Figure 4.49 - Layout of Board No. 1 for d = U,

135



Figure 4s 50 sHow^ the block diagram bf the circuit for the n = 18

elementtisubarray
 :6f tlie Noi 1 feedi fHis sutiarfay contains a center element,

a ''complete first ring of ̂ radi a Marly complete second ring bf radia-

tors'; fhe'tablS in Figure 4;50 shows ttie app'licaBle "excitation values for

these elements; 'The :iraplementati6n of these excitations requires six dif-

ferent types of hybrids; Assuming b =1 cm, 't/b = 0;06 tHe radius of the

ring hySrid is r = 0;2387A = 5.064 cm. The loss in "the hyb'rid increases with

the required power division ratio; For instance if the power ratio is 5.24 :

1 :then w> = i2;2 mm, w_2 = 11*7 mm and Wi == 0;6 'mini Fcir this case the

loss a = 6'.0044 dB per ring hyBfid. Thfis is iiegligibie compared to mismatch

and unBalance Ibsses, which can B"e kept less than 0;05 dB.

TaBle 416 shows the geometry of tfte fiitg hyBfids for the required power

"ratios.

No;
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Figure 4.50 - Block diagram of the BFN of the n = 18 element subarray of the
No. I feed, single layer implementation.
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Figure 4.51 shows the block diagram for the n = 41 element subarray.
(-

Figures 4.52 and 4.53 display the layout of the BFN for the n = 18 and

n = 41 element cases. The figures prove that It is possible to construct a
: i

center conductor layout in the n < 18 < 41 element range on a single board!
l" '

This is a very significant result, because it has a major implication on the

realizable thickness of the overall feed array, Qn the basis of these

results, it is possible to determine the loss, volume, and weight character-

istics of the overall feed array. Some of these characteristics are
'• - ' n ^" .- : • • . i

summarized in Table 4.7 and in Figure 4.54.
• ' - ' • * • • . ' ^

4.5 Quadruple Aperture Concept \

The quadruple aperture concept employs a four way division of the overall

structural aperture. This type of optics have been investigated in great

detail previously for the Land Mobile Satellite application. However, in the

present case the shape of the feed array is much more elongated, which in-

! ' ' !
creases the angle between the axis of the column and the axes of the sub-

apertures, consequently, from a optical point of view this case is more

closely related to the triple aperture concept discussed in Section 4.4.
>

Figure 4.55 shows the front view of the optics, while Figure 4.56,

Figures 4-57, 4«58, and 4.59 the geometries of the reflector profile and

the layout of a feasible feed array.

Since the characteristics of this configuration are similar to that of
, j

the 3 aperture case, it will inot be discussed here in detail. However, the
'

main feature of this optic, like increased beam number capability and larger

steps, atjsubaperture boundaries at adjacent reflectors must be emphasized.
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Figure 4.51(b) - Power distribution for feed shown in Figure 4.51(a).
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figure 4.52 - Layout of the BFN (center conductor) for n = 18.
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Figure 4.53 - Layout of the BFN (center conductor) for n =..41,

14.2



XXXXX X X X

X XX X XX XX

XXX XXXXX

X X X X X X X 'XXXXXXXXx

Max TOO x 200 box size

Dimmenslons In mm

V = 1
t =• .5
b = 10
p = .03

Thermal shield

Radiator

Substrate

Substrate

Ground plate . .
Stripline center
conductor

Substrate
Substrate
Stripline outer
conductor
Connector
teat sink .

Circuit board

Resonator

Radiometer box '

Thermal blanket

Figure 4.54 - Cross section of the feed panel. (a) Optimized for minimum loss
(b) Optimized for overall radiation performance.
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Figure 4.55 - Geometry of optics for the quadruplet antenna, front view.
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Figure 4.56 - Geometry of optics for the quadruplet antenna No. I reflector.in
plane of scan.

145



Figure 4.57 - Geometry of optf.cs for the quadruplet antenna No. 2 reflector In
plane of scan.
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4.6 Sunaary of Tradeoff Considerations

In order that the various configurations can be compared, the main re-

quirements like spatial reaolution (approx. 10 km), temperature resolution
t

(approx. 0.5°K), revisit time (3 days), was kept the same for the various

systems while the coverage percentage was set to better than 80%.

For these conditions the orbit height is approximately 678 km, while

orbit inclination can be varied between relatively wide limits.

Under these situations, the most important system parameter is the number

by which the overall structural aperture is divided to obain relatively block-

age free subapertures.

During the study this was selected as M = 1,2,3, and 4 leading to the

terminology of single, double, triple, and quadruple hoop-column antenna

configuration.

. It was recognized early in the development of the hoop-column antenna

concept, that for multibeara configuration, applications were both linear

dimensions of the feed array are large, the optics must be offset in oder to

reduce or eliminate the feed array blockage caused scatter. One such optics

is the quadruple subaperture configuration. . :

In the case of push broom radiometers, where the feed array envelope

defines a highly elongated, approximately rectangular aperture more freedom

exists in the optics design. For such feeds it is possible to offset feed the

reflector even without subdividing the structural aperture (M = 1). The

scatter under these situations is caused mostly by the column and this can be

controlled by the distance between the center of the feed array .and the axis

of the column.
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In all the investigated cases, the main structural elements (column and

hoop) remain symmetrical, but the geometry of the reflecting mesh surface

exhibits various degrees of asymmetry.

For the single aperture case the structure and its associated cable

system supports a single offset feed paraboloid. The axis of this paraboloid

is at an angle relative to the axis of the column and the normal to the feed

axis is essentially parallel to the axis of the column.

Fot the dual aperture case the reflector is either two, parallel axis

paraboloid or two, parallel axis torus and the feed is two, highly elongated

array, located close to the symmetry plane of the reflector system.

For M ^ 2 more than two paraboloid sections are utilized in an offset

configuration, with separated and generally tilted axes relative to each

other. «

For a given spatial resolution the smallest antenna diameter is possible

with M = 1. In such a system there is a practical beam number, n which can

be accomodated, because with increasing scan angle the beam efficiency

deteriorates to a possible lowest acceptable value, while the area and com-

plexity of the feed subarray corresponding to the maximally scanned beam

reaches its upper practical limit. ,

As.» M increases the following consequences can be observed: .

I.: The antenna structural diameter increases

2.• The number of possible beam increase

3. The coverage percentage improves

4. Complexity of feed reduces

5. Beam efficiency for constant number of beams improves

The above situation was analyzed for a number of cases. Since; such an

analysis is relatively complex some simplifications have been introduced.
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While these simplificatlons effect the accuracy of the results they do not

change the basic conclusions for the trend. Table A.8 shows some of the

results of these calculations.

' For M = 1 two system alternatives are shown, using one or two identical

spacecrafts, respectivley. The two spacecrafts case is introduced to make the

coverage achievable with the resultant system comparable to the M = 2, 3, and

4 systems.

It can be seen that in the single spacecraft alternative this configura-

tion results in a 4 to 5 times reduction in structural aperture area relative

to the remaining cases, but the required feed aperture area is nearly the

same. The drawback of this system is the low number of beams and consequent

low percentage of coverage, such a system is probably ideal for an early

demonstration flight, when high coverage percentage is less important.

All M > 1 cases represent a large increase in structure aperture

diameter. While the M = 2 requires the smallest of these large apertures

the achievable number of beams is relatively modest. The main difficulty in

this system is the feed subarray design for the large scan angle beams.

Detailed subarray topology studies indicate, that a single layer suspended

stripline power divider is feasible only up to approximately 41 radiating

elements. Beyond this multiple layer power dividers are necessary causing an

increase in array thickness, which probably cannot be implemented, within the

single STS flight constrain. This limits the achievable beam efficiency at

the maximum scan. Note that the indicated "average" beam efficiency in

Table 1 does not fully characterize the quality of the system. The actual

beam efficiency for the maximally scanned beam is considerably poorer.

The M = 3 case requires even more structural aperture diameter and

somewhat larger feed array area. However, the achieved number of beams is
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larger,; the spatial resolution is better and the beam efficiency is higher.

While tliere is an 18% increase in beam numbers relative to M = 2 the number

of radiating patches is reduced to 95.6%, thus the individual subarray designs

are easier. Furthermore, the feed array is divided into three instead of two

packages, which could make its deployment simpler. The reflecting surface

geometry has three symmetry planes, which make the mesh system design

relatively simple.

the M = 4 case represents an RF design refinement relative to the

M = 3 case, but ath the expense of added mesh design complexity. This system

has only,two reflecting surface symmetry planes and has large steps' in the
t

reflecting surface at subaperture boundaries. '

According to Table 1 this system can use a relatively small overall feed

array area and a somewhat lower number of radiating patches. This is the con-

sequence of the reduced beam scan requirement for the individual subapertures.

At the same time this configuration offers some improvement in beam

efficiency. Overall this case has poorer resolution and more structural

complexity than the M = 3 case. It appears that with these deteriorations

the improved beam efficiency is not an adequate justification for this system.

On the basis of the above presented comparison it appears that M = 1, 2,

or 3 have all some merits for a practical system. Since M = 2 and.3 are not

drastically different from a structural point of view any of these two can be

selected-.as a representative system for a multiple aperture configuration.

Since Mi- 3 requires a larger structural diameter, this may be selected !as

the upper limiting case from mechanical point of view. The other extreme is

the M = 1 case, which represents the ultimate feed complexity requirement.
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TABLE 4.8

Summary of tradeoff analysis results

No. of No. of Structural Total Total No.of Average Ife.of Gbvera^
subapertures Spacecraft diameter structural feed patches beam beams "L resolution

aperture array efficien- km
area area cy %

m m m

1 1

1 2

2 1

3 1

4 1

50.9

50.9

100.4

118

118

2D38.8

4077.6

7916.9

10935.9

10935.9

1283

256.7

93.8

127.7

69.81

4408

8816

4600

4396

4200

81.0

81.0

87.7

845

88.7

33

66

44

52

48

64

83.2

855

865

865

95

95

10.9

9.2

10.2
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5. CONFIGURATION DESIGN

5.1 Introduction

The configuration desing of the feed for the radiometer antenna involves

a number of well defined steps. These Include:

1. Radio frequency - mechanlca - thermal desing of the feed arrays

2. Integration of the radiating structure - radiometer panel assemblies
• ' ' '('•

3. Design of panel deployment subsystem

4. Analysis of dynamic behavior
.*

5. Calculation of geometrical inaccuracies
•. i

. ; -

6. Reliability analysis• . -.(• ; •• . i
In the following discussions the above problems will be outlined at

' ' ' • ' £ ' • ' i

conceptual levels only and they will be restricted to the three aperture

configuration. Details have been investigated only to determine feasibility

of various concepts and approximate weight of the overall assembly.

5.2 Interfaces Influencing the Configuration Design

In the triplet aperture antenna a total of 52 feed arrays must be imple-

mented and correctly located within the overall optical system. According to

Figure 4.32 and Figure 5.1, there are a total of 11 types of radiating arrays,
i

each consisting of a set of printed radiators, a printed power divider board

and two solid surface conductors acting as ground planes. It is assumed that

these four layers are deposited on kevlar substrates and separated by layers

of honeycomb or structural foam. They are Integrated with their radiometer

units, associated heat sink and packaged for overall thermal stability. A

typical construction concept for such a configuration is shown in Figure

5.2. The weight per unit area for the present purpose was determined from

actually achieved values on a 19 radiating element construction.
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In'a practical design, several arays may be integrated into subpanels of

the overall feed. However, from the point of view of testing, ground hand-

ling, and sparing, it is advantageous to maintain separability of the feed

arrays for each beam. Utilizing this concept, an independent array support

frame is necessary into which the feed arrays are separately integrated. Such

a frame .can be added without any major weight penalty, because the final

rigidity of the structure is determined by the contributions of the integrated

panel structure and frame structure.

The configuration of the frame structure is strongly dependent on the
• • *"

necessary thicness of the panels, the subdivision of the overall feed into
i ;

subpanels, the deployment concept and the overall space availalbe in the cargo
i i

bay of the STS.

The L-band radiometer payload can be divided into two major subsystems:

optics and feeds. For the triplet antenna the weight and volumne of,these

subsystems are close to each other. They can share the available payload

space in the Shuttle cargo bay in two conceptually different ways:

1. iThe optics subassembly occupies an inner cylinder and the feed is

wrapped around it in a cylindrical annulus.

2. The optics and feeds are mounted in an end to end configuration, each

occupying a larger diameter but shorter length cylindrical space.

In the following these two basic concepts and some variants of them will

be presented. , ;

i

5.3 Wrap Around Feed Packaging

Figure 5.3 shows the basic geometry of the wrap around packaging.

The available space is determined by the 3.34 m outside envelope requirement

of the stowed 118 m diameter hoop column optics and the 4.438 m inner envelope
s

defined by the STS cargo bay. Assuming that each of the feed panels of the
• i
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Figure 5.3 - Geometry of wrap around feed packaging. (One of six half panels
; is shown.) Maximum axial length is 15.744 m.
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triplet antenna are divided along the longitudinal symmetry axis the available

cross section for each of the six subpanels is 1.931 m x 0.25 m. According to

Figures' 4.33 and 4.34, the maximum width f these subpanels is 1.88 m, thus

this scheme allows 5.1 cm clearence for the width f the panels. According to

Figure 4.54, the thickness of the RF portion of the panel is 9.06 cm. Thus
: I . . - ,

the above scheme allows 15.4 cm space for the thickness of the panel support-

ing frame and deployment mechanism. It must be noted that an additional

4.35 cm'thickness clearence is available at places which are not occupied by

the radiometer boxes. The provided space appears to be adequate with some

margins ' of safety for the support frames and deployment motors.

There are numerous combinations, a panel stowed in the above defined

space can be deployed into its operational position, the various methods can

be compared on the basis of the number of deploymnet steps involved, the total

volume and weight requirement, achievalbe accuracy and reliability. It is

assumed in the following that the feed deployment follows the deployment of

the optics.

Figure 5.4 shows the deployment sequence for one possible concept (method

No. 1). Due to the fact that feed No. 1 and feed No. 2 and No. 3 are

different in shape and operational position their deployment involve different

mechanism configurations.

Figure 5.4(a) exhibits the steps needed for the placement of feed No. 1

In stowed condition this feed is attached to a U-shaped structure. One arm of

the U is. insode the telescoping tower attached to the end of the column. *

Because of the necessary long length (7.87 m) of the U structure it is

necessary to retain the end of the panels during the Shuttle flight.
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Figure 5,4(a) - Deployment of feed No. 1 of wrap around configuration.
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The first step is the release of this retainment, followed by the deploy-

ment of the U structure. During this step the feed makes a 7.87 m translatory

movement along the axis of the column. This is achieved by telescoping

action. This movement along the axis of the column. This is achieved by

telescoping action. This movement can be coupled to telescoping of the end

section of the column, which is part of the optics deployment. Thus this step

may not require an additional motor and its reliability is not part of the

feed deployment reliability budget.

The second step is to flatten of the two half panels into a single planar

panel. This involves a +30° and -30° rotation of the half panels and can be

achieved symmetrically by a single motor operating a dual linear actuator or

spring coil if retrieval is not necessary. At this point the longer dimension

of the feed is still parallel to the axis of the column.

The third step is a 90° rotation of the overall feed assembly. During

this phase the normal to the radiating structure is directed perpendicular to

the column, outward from the axis of the reflectors.

The fourth step is a 62.5° inward rotation of the feed panel. This step

assures the final orientation as well as the final positioning. The center of

the feed panel is a 1.965 m from the axis of the column, at the Fj focal point

of the No. 1 subaperture.

Omitting the initial transnational movement the above deployment scheme

involves the use of three stepper motors providing the flattening (30°),

orientation (90°), and alignment (62.5°) rotations, respectively. Noe of

these rotations appear to be excessive. Furthermore, since the optics
,*

utilizes/.ja large F/D none of the rotational accuracy has a major influence on

the beam:/ef-ficiency of the system. The inaccuracy of step 2 has some second

order effect on axial focusing and may be used for independent fine, focusing
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of the two half panels. (Addiitonal axial focusing adjustment may be achieved

by step 1 for one of the three feed arrays.) The nominal 90° rotation pro-

vided by step 3 is vital for the operation of the system, but an error in this

rotation has only second-order effect on the locations of the beams relative

to the beams produced by feed No. 2 and No. 3.

Finally, the rotaion achieved by step 3 determines the location of the

field distribution relative to the nominal in the offset feed parab'oloidal

subaperture.1 A small error in this rotation has only second order effect on

the shape of the secondary pattern. It can be concluded that the only rela-

tively critical deployment is step 1. 1 cm error in this step procudes a peak

quadratic error of approximately 4.71° in the paerture of the paraboloid.

1 cm maclmum positioning error for the telescopic mechanism seem to be realiz-

able during initial deployment representing 1.5 * 10~ of the nominal focal

distance.

the. above factor is at least an order of magnitude larger than the

applicable thermal expansion coefficient. Consequently, thermal effects are

not.expected' to play a major role in the axial focusing (beam shape) char-
. • ' . - . . • ' . • : i
acteristics of the system. It can be concluded that the presented deployment

concept is feasible from kinematic and accuracy point of view.

The i described flattening, orientation, and alignment operations can be

provided.in a number of slightly different manner. Figure 5.5 compares the

described method No. 1 to an alternative (method No. 2). In this the flatten-

ing operation is applied only to one half panel. This does not save a motor

but eliminates one set of linear actuators. Additionally, if this operation

fails, one half panel is still in the right location and only 9 out <18 beams

are lost. The price of this improved reliability is that the rotation needed

for the half panel is larger (58.2°) and the alighnement maneuver requires
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OUTER ENVELOP
4.420 DIA.

INNER ENVELOPE
3.352 DIA

COLUMN AXIS PERPENDICULAR1

TO FIGURE

STOWED POSITION

Dimensions in m.
(Subalternative A)

Figure 5.5(a) - A l t e rna t ive deployment •>!: feed No. 1, wrap around
configuration.
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S!

PANEL OPENED AND ROTATED
90° ABOUT b-b AXIS

Dimensions in m.
(Subalternative A)

Figure 5.5(b) - A l t e r n a t i v e d e p l o y m e n t of f^erl No. I , wrap around
c o n f i g u r a t i o n .
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62.5° CW

PANEL ROTATED 62.5'

DEPLOYED POSITION

Demensions in m.
(Subalternative A)

Figure 5.5(c) - Alternative deployment of feed No. I, wrap around
configuration.
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Figure 5.5(d) - Alternative deployment of feed No. I, wrap around
conf tgurat.Lon.
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COLUMN AXIS

PANEL OPENED AND ROTATED
90° ABOUT b-b AXIS

Dimensions in m.
(Subalternative B)

Figure 5.5(e) - Al te rna t ive deployment of No. 1, wrap around conf igurat ion.
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33.4° CW

COLUMN AXIS

PANEL ROTATED 33.4° AND TRANSLATED
INBOARD 0.110

DEPLOYED POSITION

Dimensions in m. (Subalternative B)

Figure 5 .5(f ) - Alternative deployment of feed No. t, wrap around
configurat ion.
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two steps: a 33.4° rotation and a 0.1 I m translation perpendicular to the

axis of the column. In practice, however, the last step can be omitted,

because the associated (flight direction) displacement of the beams is only

0.095° or 0.326-j which has a negligible effect on beam shape, beam efficiency

or coverage. It can be concluded that the compared two methods require about

the same total rotation and both are feasible. The choice between the two can

be made on the basis of more favorable mechanical design details.

The deployment of feed No. 2 is iii principle simpler than that of feed

No. I because it does not involve the Linear translation of the U structure.

One possible concept is exhibited in Figure 5.6. The first step is the flat-

tening operation, which involves a nominal 60° rotation of the half panel.

This may be achieved by the mechanism employed in Step 1 for method 2 of feed

No. 1. However, for feed No. 2 the radiating surface of the panel is on the

inside in the stow configuration, thus the mounting of the deployment

mechanism may require some compromise if standaridizatLon is attempted. The

second step, is a 15° rotalon assuring the orientation of the plane of the

array perpendicular to the plane of scan. Finally, the alignment operation is

achieved by a nominal 112.5° rotation in the plane of scan. It may be noticed

that the rotaional tolerance requirements of the first two steps are not very

critical. However, the last rotation lias a major effect on axial defocusing

caused by the displacement between the center of the panel and F2« Again, if

1 cm error is tolerated at the center of the panel for axial defocusing the

final rotation must be accomplished with 0.082° accuracy. If a 1 cm error is

tolerated at the center of the maximally scanned feed array then the rota-

tional error cannot exceed more than approximately 0.04°. Assuming, that the

location tolerance of the supporting telescopic arm is also 1 cm. The above

condition causes a total of 2 cm peak error for the phase center location of

171



the worst (maximally scanned) beam. The associated peak quadralic error for

this condition is a relatively large 18.8°. However, since the beam shape of

the maximally scanned beam is relatively poor even in the absence of this

error the additional damage is negligible and the system performance is not

deteriorated much further. From mechanical point of view the achievement of

maximum 0.04° rotational error is still a difficult criteria for this deploy-

ment scheme. •'

Figure 5.7 exhibits another method to achieve the above deployment. This

method uses a U-sphaped structure similar to the one described for feed No. 1.

Using this concept, the first step is the translation of the U structure;

second step Is flattening achieved by symmetrical ±30° rotaions; third step is

displacement of the center of the panel; fourth step is tilt parallel to the

operational aperture plane; fifrh step is alignment of the long axis of panel

into the plane of scan by 15° orientation. This method intorduces an addi-

tional step in the deployment sequence, but reduces the effect of angular

alignment tolerances. For 1 cm axial error in the middle of the panel the

step 3 rotation must be only 0.082° accurate. If step 4 is also 0.082°

accurate then 1 cm additional error is introduced for the position of the last

subarray. Since the two errors are independent their most probable.combined

peak error is 1.4 cm. for a combined 1 cm maximum error this scheme allows

0.058° peak rotational errors in the motor positions of step 3 and step 4.
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1.0
Radiating surface

Sym. plane

Stow

1.672
>--—>• a

-.064

Step 1: Flatten array by 60°
rotation

1.672

Radiating
surface

Step 2: fteitim array by 15" rotaticn
Step 3: Orient array to operational

position by 112.5° rotation

Figure 5.6 - Deployment concept for feed No. 2 in wrap around conf igura t ion .
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OUTER
ENVELOPE
2.210 DIA.

INNER
ENVELOPE
3.352 DIA.

STOWED POSITION

Dinmension in m.

Figure 5.7(a) - Alternative deployment of feed No. 2, wrap around
configuration.
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PANEL OPENED,EXTENDED AND
ROTATED 15° ABOUT c-c AXIS

Dimensions in m.

Figure 5.7(b) - Alternative deployment of feed No. 2, wrap around
configuration.
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PANEL ROTATED 67.48° ABOUT b-b AXIS
AND ROTATED 24.9° ABOUT a-a AXIS

67.48°

Figure 5.7(c) - Alternative deployment of No. 2, wrap around configuration.
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0.25

VIEW A-A DEPLOYED POSITION

Dementions in m.

Figure 5.7(d) - Alternative deployment of feed No. 2, wrap around
configuration.
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5.4 End-Mounted Feed Packaging

The end-mounted feed packaging concept is particularly advantageous for

los and medium orbit applications (like the L-band radiometer) where the

booster rocket in the STS occupies a relatively short length of the cargo

bay. In such a configuration the hoop column antenna may occup a larger

diameter volume. This could ease it mechanical design and/or improve its

accuracy.

Figure 5.8 shows the assumptions for the stowage space of the feed pack-

age. It is assumed that in such a configuration the feed interfaces with the

hoop column structure at the top of the telescoping column.

The space depicted in Figure 5.8 is divided for the three feeds as shown

in Figure 5.9. Each feed is folded in an accordion fashion into a nominally

3.76 m tall, 4.43 m wide and 0.434 m thick package. These three packages are

stowed side by side with 0.1 m clearance between them. The largest diameter

for this condition is 4.245 m. This fits into the assumed envelope. The free

folded feed packages are mounted on an interface structure which contains the

pivoting axes for the feeds.

Figure 5.10 exhibits the folded layout of feed No. 1. The overall panel

id idvided into four nominally equal subpanels. A total of three internal

motors (or spings) are needed to flatten this assembly. The deployment of

such a configuration is well studied in the art and is similar to solar array

deployment schemes or the one used for SAR phased arrays. Some additional

complications are introduced presently by the interleaved nature of the sub-

arrays (see Figure 5.1), but this can be handled by properly selected pivot

axis locations.
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3.97
•< »•

Feed

Column

Dimensions in m.

Figure 5.8 - Envelope of stowed feed in end-packaged configuration.
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492.1

376

Pivot for No.1
feed STS axis

/

Interface
structure

Pivot for No.2
and No.3 feed

Side view
Ehd view

Dimensions in cm

Figure 5.9 - Internal details of feed package in stowed condition
(end-packaged configuration).
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Figure 5.10 - Accordion type packaging of array panel for feed No. I,
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The deployment sequence can be followed In Figure 5.11. For feed No. 1

the first step is a 90° rotation of the feed package. This is followed by

step 2 which is the flattening operation of the panel. Note that a 1 cm axial

position accuracy for the center of the panel requires only 0.304° rotational

accuracy, provided that the interface structure location is perfect. A total

of four motors are required for this deployment.

For feed No. 2 and 3 the first deployment step is the 90° rotation, like

in the case of feed No. 1. The second step is the 15° rotation to bring the

package into the plane of scan. The last step is flattening. This scheme

requires five motors. Additionally, the flattening involves the support of

the panel at one end with the associated tolerance problems as discussed in

conjunction with the wrap around packaging. The final deployed configuration

is showji in Figure 5.12.

5

5.5 Weight Estimate

On the basis of the previously outlined configuration concepts, a pre-

liminary weight estimate can be devleoped for the overall 118 m diameter hoop

column radiometer antenna. The results for the wrap around feed packaging

configuration are summarized in Table 5.1.
i • . •

The overall antenna consists of two main subsystems: optics and feeds.

The optics are made up from the hoop column and reflector; the feed may be

subdivided into radiators, ra.diometers, support frames, and deployment mechan-

ism.
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116.1

3 step development

Figure 5.11 - Steps of deployment for No. 1, No. 2, and No. 3 feeds
(end-packaged configuration).
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TABLE 5.1

Preliminary weight estimate for the 118 m diameter radiometer system

(weight in pounds)

Optics 2188 (25.8%)
Hoop 628
Column 1340
Reflector 220

Feeds 6282 (74.2%
Radiometers 312
Support frames 1554
Deployment mechanisms 180

Total 8470

The following comments can be added to Table 5.1. The weight of the

optics subsystem is obtained from an earlier study. Since this study was

relatively extensive the accuracy of these calculations are thought to be

within ±15%.

The largest single item in the total budget is the weight of the radi-

ating structure. The cross section of this element is shown in Figure 4.54

and the area and number of subarrays is displayed in Figures 4.32, 4.33, and

4.34. The radiating structure is composed of 4 plated substrates, a thermal

shield and an interconnecting honeycomb support.

The total thickness of the substrates and thermal shield is 0.6 cm. At a

specific weight of 2.15 this represents 1.29 g/cm2 = 2.628 lb/ft2. The thick-

ness of the total honeycomb is 4.11 cm. Utilizing the weight characteristics

o

of 1 in. honeycomb with y^ cells the weight of the honeycomb is 1.199 lb/ft .

P. Poles "RF Characteristics of the Hoop Column Antenna for the Land Mobile
Satellite System Mission." (Foldes Incorporated, NASA Contractor Report 3842,
Contract No. NAS1-17209, November 1984)
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On the basis of the above data, the integrated feed panel weight is 3.827

*\ .
Ib/ft , neglecting the weight of the plating. Table 5.2 shows the weight

breakdown of the various feeds of the 52 subarray system.

TABLE 5.2

Subarray panel weight characteristics

No. of radiating
elements

18
20
22
25
28
31
35
38
41

Total subarray area

Total subarray weight

Specific weight

Area
(m2)
1.127
1.368
1.496
1.697
1.911
2.112
2.378
2.601
2736

Qty.
4
6
6
6
6
6
6
6
6

102

1921.6

Total area
(m2)
4.508
8.208
8.976
10.182
11.466
12.672
14.268
15.606
16.416

.3 (1106.9 ft2)

kg = 4236.4 Ib

3.83 Ib/ft2

The above calculated weights may be compared to the weight calculated

from an actually constructed similar feed panel used in the ground based 15 m

diameter hoop column antenna experiment. This calculation results in 5616 Ib

or 32.5% more than the figure in Table 5.2. However, considering the fact

that in the referenced panel, no significant weight reduction effort was

employed, the discrrepancy is not very large. Another reference point may be

9
the weight study results of an 1.49 m * 14 m = 20.9 m synthetic aperture

2 2radar phased array. This resulted in 2.91 Ib/ft for the feed panels, a

figure considerably better than shown in Table 5.2. On the basis of the above

indications, it is estimated that the accuracy of the weight values shown in

2P. D. Patel, G. Sequin, P. Foldes "Radarsat Passive Planar Array Study" (SPAR
Aerospace Ltd., RML-009-83-130, DSS Contract No. OSR83-00068, April 1984)
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Table 5.2 is within ±20%. It is far more difficult to estimate the remaining

part of the feed without a detailed structural and kinematic analysis. For

the purpose of weight calculation it is assumed that the panels are supported
i • *'

by a lattice type triangular truss structure, each of which weights 300 Ib

(Qty 3 required). The assembly is held together by two rings (unit weight

126 Ib) and six struts (unit weight 30 Ib). The deployment mechanisms utilize

a total of nine motor-actuator assemblies, with an average weight of 20 Ib

each. The accuracy of these calculations is estimated at ±25%. On the basis

of the above assumptions the weight of the radiometer system is

8470 ± 1444 Ib.

5.6 Thermal Considerations

There are two types of thermal problems which are affecting the design

and operations of the radiometer system.

The first group of problems are possible thermal failure mechanisms.

Most of these may occur during the deployment of the system. They could take

the form of seizures in the linkages or actuators with the result of partial

or complete deployment failures. However, due to the partitioned nature of

the overall feed a complete deployment failure has very low probability. The

overall feed is divided into groups of 17 + 17 + 18 subarrays and each group

into two. Each "half feed" containing 8 or 9 subarrays is deployed somewhat

independently from the others. Additionally, this deployment may be

accomplished at an orbit height which is accessible by the STS, thus poten-

tially EVA servicable. Since the feed deployment mechanism represents only

2.1% of the total system weight redundancy may be considered without excessive

increase of overall system weight.

The second group of problems are related to thermal instability. The

total thermal energy influx to the feed varies drastically during operational
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conditions. Figure 5.13 shows projected cross sections of the feed for the 0

to 90° Sun angle range. The varying amount of intercepted solar flux causes

three effects:

1. Deformation of the feed structure relative to its nominal position,

2. Deformation of the microwave radiating circuit relative to its ideal

geometry,

Variation of the ambient temperature of the radiometers.

The deformation of the feed structure (tilt, wharping, translation)

causes a movement of the beam centers relative to an arbitrary reference and

relative to each other. Additionally, a beam shape deformation and sidelpbe

level deterioration may take place. Among these effects only the movement of

beam centers relative to the arbitrary reference may be significant. For a

given revisit position these pointing errors remain relatively constant and

vary only slowly during the year. Thus most of the introduced errors can be

taken into effect by an appropriate calibration procedure. Additionally, the

feed support structure must be designed with thermal shield protected low

temperature coefficient materials.

The deformation of the microwave radiating circuit and particularly the

quality of contact between printed circuits and coaxial components could cause

a variation of input impedances of individual subarrays, which in turn could

cause a frequency dependent variation of subarray radiation pattern, internal

loss, and transfer function. At the end, these variations manifest themselves

to variations in the antenna noise temperature. The above effects can be

minimized by the use of RF transparent, high quality multilayer thermal

shields. These types of protections introduce a certain RF loss (noise

temperature component) which decreases during the mission due to radiation

damage. At the same time the effectiveness of the thermal shield decreases.
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UPPER FEED

LOWER FEED

Figure 5.13(a) - Projected cross section of feeds for various Sun angles.
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75 DEG 90 DEG

Figure 5.l3(b) - Projected cross section of feeds for various Sun angles.
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Thus the radiating element side of the. shield must be designed for maximum

tolerable loss at the beginning of mission and minimum thermal protection at

the end of mission.
'> t

The effect of variation of ambient temperature on the performance of

radiometer can be minimized by passive temperature control (heat sink, heat

pipe) and/or by heaters. In Table 5.1 a considerable part of the radiometer

weight is associated with the use of heat sinks, which are mounted on the

Earth facing side of the radiometer boxes. A further increase in the mass of

the heat sink may be desirable. This will not affect significantly the over-

all weight of the system, but it may increase the feed package thickness, thus

it becomes unimplementable from packaging point;of view. Consequently, the

use of active heat control can be a desirable option.
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6. TECHNOLOGY DEVELOPMENT REQUIREMENTS

Since the beginning of NASA Langley Research Center's Large Space

Structure Development Program, considerable progress was made in the area of

the optics. To study the optics first was logical, because this part of the

system is physically larger, it is usable for a number of missions with

different feeds and without its design the feed design cannot be started.

However, as Table 5.1 indicates the weight of the optics for a typical

radiometer mission represents only 25.8% of the.total payload weight. On that,

basis it can be suspected that a larger complexity and cost is associated to

the remaining (feed related) part of the system. Consequently, if the

development of an overall soil moisture measuring radiometer system is contem-

plated serious research and development on the feed related items must now

begin.

The technology development need of this area are summarized in Table 6.1.

The following comments can be added to Table 6.1.

Radio frequency

a. An adequately accurate software to simulate the radiation character-

istics of printed circuit type subarrays with element numbers up to about 50

must be developed. Some less accurate form of such software exist. However,

existing software does not consider accurately the element pattern of various

patch shapes, their frequency dependency and neglects mutual coupling.

Additionally, no capability for arbitrary element locations is available.

Software extension must include coupling between thermally introduced deforma-

tions and changes in the radiation pattern.

b. In order to predict the input reflection coefficient, power division,

loss and noise temperature characteristics of subarrays up to 50 elements a

scattering matrix software program must be developed. This program must cover
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TABLE 6.1

Technology development needs related to the feed of the

soil moisture measuring radiometer

1. Radio frequency
Feed pattern software
Feed circuit scattering matrix software
Secondary pattern software
Feed array implementation
Radiometer
Reconfigurable feed
Radiometer system tests

2. Structure
Panel structure
Support structure
Deployment structure

3. Kinematics
Flattening
Positioning
Orientation

4. Thermal
Shield
Sink
Active

5. Control
Deployment
Fine positioning

6. Monitor
Location
Temperature
Aging

the applicable power division trees for suspended stripline components, like

straight sections, bends, couplers, loads, connectors. Output data shall

include return loss, transmission line loss, noise temperature, and complex

power division as a function of frequency.

c. Secondary pattern software shall be further developed to accept

results from the primary pattern software program. Such a program must be

applicable for secondary pattern synthesis in the hoop column antenna optics

environment. Related minimize based synthesis programs are available for

shaped beam communication satellite antennas. However, existing programs
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cannot take the presently required large element numbers and they are slow for

the presently required large directivities. Additionally, no software exists

for the synthesis of maximum beam efficiency. While existing beam shape

synthesizing minimax programs in principle operate similarly to the present

requirement the new software must include significant modification, extentions

and even change of principles if better calculation efficiency is attempted.

d. According to Figure 4.32, eleven different types of feed arrays are

needed for the radiometer. The simplest contains 18, the most complex 41

radiating elements. The feed technology development may start with the 18

element array and eventually include the maximum element number. Specific

aims of these development shall be control of radiation performance, minimiza-

tion of loss and weight, minimum frequency variation and temperature sensi-

tivity.

e. Reconfigurable subarray in the 18 to 41 element range shall be

developed. Reconfigurability is for compensation of reflector surface

inaccuracies in the changing environment. Two classes of this type of arrays

may be recognized: Phase only and phase-amplitude variant arrays. Required

technology is printed 0-90° and 0-360° phase shifters either at RF or IF

frequencies. In the later case a low noise down converter is employed at each

radiating element with a common LO and reconfiguration is accomplished after

preamplification.

f. A radiometer shall be developed which considers the r—f, mechanical

and thermal interface requirements presented by the feed design.

g. An integrated feed radiometer package test shall be implemented which

includes ground based radiation tests, environmental tests, airborne tests and

STS experiments. Accuracy of prediction, thermal, and material stability are

the main issues for these tests. .
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Structure

a. The basic panel structure represents different shapes and sizes than

employed on previous space based arrays, like SAR. New strucurally optimum

and thermally acceptable panel structures must be developed.

b. Support structures to hoi the feed arrays during stos and deployed

conditions must be developed. These structures must handle the applicable

loads and required accuracies..

c. Structures as part of the deployment system must be designed and

verified.

Kinematics

Detailed study of the kinematics for the feed deployment is necessary in

order to select the optimum system for the deployment of required type of feed

arrays. Generally, the deployment system must accomplish these functions:

flattening, positioning and orientation of the feed. All these are part of

the initial deployment. Additionally, the orientation function may be

utilized to improve system performance during operational conditions. For

instance a fine feed positioning capability may be used to slightly relocate

the foot print without reorienting the complete antenna system.

.Thermal . . . . . • •

a. Thermal shields which are RF transparent at the operational frequency

with adequate solar flux reflectivity shall be developed. (This is a refine-

ment of existing design.)

b. Use of heat sink and heat pipes for the present environment shall be

studied and optimumdesign developed.

c. Use of active temperature control shall be documented.
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Control

Control systems shall be developed to handle the stability requirements

of the radiometer during deployment and during operation. This shall include

orientation maneuvers, orbit height change maneuvers and retrieval procedures.

Additionally, control methods are required for fine positioning of the overall

radiometer or some of its specific beam clusters.

Monitor

a. The most important special monitor function is the determination of

the pointing status of the inidvidual beams of the radiometer. This may be

accomplished by r-f or optical position determination of individual subarrays

or feed panels and measurement of some reference point locations of the sub-

aperture reflectors.

b. A temperature monitoring system must be developed in such a manner

that system calibration can be updated as a function of specific temperature

readouts at appropriatly selected locations.

c. The antenna is composed from a number of different materials. Many

of them may display variations in the space environment. Consequently it is

important to introduce some monitoring function whichcan detect effects of

these variations.
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7. CONCLUSIONS

The use of the hoop column antenna for soil moisture measuring radiometer

applications have been investigated at the conceptual level.

The study indicates, that the major mission requirement of a nominal

10 km spatial resolution, 3 days revisit time and near complete coverage of

the temperate zones of the Earth can be accomplished with a 118 m diameter

antenna. Thelimitations associated to the blockage caused by the column and

the feeds can be greatly reduced by the use of 2, 3, or 4 subapertures. While

there are no drastic differences between these subaperture selections, pre-

liminary studies indicate that the three subaperture configurations represent

a reasonable overall compromise. Such a system allows the use of 52 beams,

each shaped by subarrays containing 18 to 41 radiating elements. The resul-

tant optics—feed payload can be packaged into a single STS flight weighting

approximately 8470 Ib and subsequently placed into a 678 km to 787 km high

orbit.

The study indicates that 74.2% of the total payload weight is in the

feed-radiometer package, thus this part of the system may represent the

complexity center. The implementation of the studied radiometer will require

technology development effort in this area. The major development require-

ments are identified in the study. ,
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